

# **VHE GRB Afterglows: A story about Bactrians, Dromedaries and lots of Butterflies**

Marc Klinger, Andrew Taylor, Walter Winter, Donggeun Tak, Sylvia Zhu

18.11.2022

**AP seminar** 



HELMHOLTZ WEIZMANN RESEARCH SCHOOL MULTIMESSENGER ASTRONOMY



HELMHOLTZ





#### Are gamma ray bursts...



Or

## **Dromedaries**



**Bactrians** 

DESY. | DESY AP Seminar | M.Klinger, 18.11.22





https://www.balisafarimarinepark.com/what-makes-camel-became-a-unique animal/





https://en.wikipedia.org/wiki/File:07 Camel Profile Silverton **MSN** .2007





# **GRBs from two sides**

#### **OBSERVATIONAL** picture

- we observe flashes of X/γ-rays isotropically distributed on sky
- we find a complex prompt phase and smooth afterglow in the light curve

s-1)

lux (erg cm<sup>-2</sup>

- we have associated one short burst to a NS-NS-merger and many some long ones to SN
- short events  $\rightarrow$  hard to follow up



# **GRBs from two sides**

#### **OBSERVATIONAL** picture

- we observe flashes of X/γ-rays isotropically distributed on sky
- we find a complex prompt phase and smooth afterglow in the light curve
- we have associated one short burst to a NS-NS-merger and many some long ones to SN
- short events  $\rightarrow$  hard to follow up

#### **THEORETICAL** picture

- accelerate a shell of hot plasma (jet) and dump it into a circum-burst medium
- different mechanisms

   convert the kinetic energy
   eventually into photons that
   we can observe at Earth
   (and other messengers?)

→ Fireball model

#### **Instrument recap**





#### **Instrument recap**



#### **Instrument recap**



DESY. | DESY AP Seminar | M.Klinger, 18.11.22



DESY. | DESY AP Seminar | M.Klinger, 18.11.22



→ Bactrian

# GRB 190829A (detected by H.E.S.S.)



• preference for single component  $(5\sigma)$ 





#### Now what?



#### **Outline**

- GRB modeling basics
  - → what do I actually mean by *Dromedary* and *Bactrian*?



• How stable is the Bactrian claim for GRB 190114C (MAGIC) ?

# Fireball model (GRB basics)





# Fireball model: Long GRB



- Lorentz factors up to few 100
  - $\rightarrow$  relativistic compression
- Quasi isotropic outflow
- Energetics:
  - $\rightarrow$  observed up to:  $E_{\rm iso} \sim 10^{54} erg$

$$\rightarrow E_{\rm tot} = \frac{\Omega}{4\pi} E_{\rm iso} \sim 10^{51} {\rm erg}$$

- $\rightarrow$  comparable to SN !
- efficient converters of kinetic energy to radiation

#### Forward shock and blast wave



## Forward shock and blast wave



#### observer's frame





#### shock rest frame





#### shock rest frame





#### shock rest frame





DESY.| DESY AP Seminar | M.Klinger, 18.11.22

# Leptonic one zone modelling



#### **Fiducial set of parameters**



# **Fiducial set of parameters**



- electron spectrum in quasi-steady state
  - $\rightarrow$  smoothly broken power law
  - $\rightarrow$  slope dictated by dominant cooling process
- steady state for const.  $\tau(E)$ ,  $Q_E(E)$ :

$$\rightarrow \partial_t N_E = -\frac{N_E}{\tau} + Q_E = 0 \quad \rightarrow \qquad N_E = Q_E \tau$$

- here: time dependent  $\tau(t, E)$ ,  $Q_E(t, E)$ 
  - $\rightarrow$  same result with numerical factor of order unity  $\rightarrow N_E(t) \propto Q_E(t) \tau(t)$



#### **Fiducial set of parameters**



 $\rightarrow N_E(t) \propto Q_E(t) \tau(t)$ 

# **Photons Spectrum: Synchrotron Self-Compton (SSC)**

• just another example of convolutions



photon spectrum

## **Radiation processes: Synchrotron**

• electrons gyrate in magnetic field



#### Photon spectrum: Synchrotron toy spectrum



#### Photon spectrum: Synchrotron smooth electrons



## **Radiation processes: Inverse Compton**

• electron up-scatters photon (energy transfer to photon)



#### Photon spectrum: Synchrotron Self-Compton (SSC)

→ Convolve electron spectrum with radiation kernel



# Bactrian – two hump – SSC – model





# **Dromedary – single hump – Syn. – model**

 how about extending a single synchrotron component up to TeV?

 $\rightarrow$  "just" increase max. electron energy

- leptonic one zone model uses same magnetic field for
  - $\rightarrow$  confinement within acceleration zone
  - $\rightarrow$  creating radiation
  - $\rightarrow$  burn-off limit  $E_{\rm max}^{\gamma} \sim 100 \ MeV$
- split 2 zones
- hadronic components?



# **Specifying the Camel Question**

 do we observe a two hump model or do we need to think about ways to extend the single hump to VHE energies?





# **GRB 190114C**







# **Observational window**



- triggered:
  - $\rightarrow$  Swift satellite (**BAT**, XRT)
  - $\rightarrow$  Fermi satellite (**GBM**, LAT)
- rapid follow up by MAGIC
  - → VHE afterglow observed up to 40 min
- intermediate redshift z = 0.42

#### GRB 190114C (MAGIC \)

- $10^{-7}$ *EF<sub>E</sub>* [erg/cm²s] 68-110s 110-180s  $10^{-8}$ 180-360s 180-380s 360-625s ■380-627s 625-2400s  $10^{-9}$ GBM LAT MAGIC BAT XRT  $10^{-10}$ 10<sup>8</sup> 10<sup>9</sup>  $10^{10} \ 10^{11} \ 10^{12}$ 10<sup>7</sup> 10<sup>5</sup> 10<sup>6</sup> 10<sup>2</sup> 10<sup>3</sup> 10<sup>4</sup> energy [eV]
- **Dromedary**?
- remarkably flat over 9 orders of magnitude in energy! •







• just looking at lovely butterflies has no statistical meaning...





 $\rightarrow$  model











$$\frac{\mathrm{d}N_{\mathrm{source}}}{\mathrm{d}E\,\mathrm{d}t\,\mathrm{d}A}(\widehat{E})\,\exp\left(-\tau(\widehat{E})\right)$$



→ model absorbed measurements of multiple detectors



Counts rate 
$$(E) = \int d\hat{E} \frac{dN_{\text{source}}}{dE \, dt \, dA} (\hat{E}) \exp\left(-\tau(\hat{E})\right) A_{\text{eff}}(E, \hat{E})$$



→ model absorbed measurements of multiple detectors



Counts rate 
$$(E) = \int d\hat{E} \frac{dN_{\text{source}}}{dE \, dt \, dA} (\hat{E}) \exp\left(-\tau(\hat{E})\right) A_{\text{eff}}(E, \hat{E}) c_{\text{sys}}$$



→ fit model to absorbed measurements of multiple detectors



Counts rate 
$$(E) = \int d\hat{E} \frac{dN_{\text{source}}}{dE \, dt \, dA} (\hat{E}) \exp\left(-\tau(\hat{E})\right) A_{\text{eff}}(E, \hat{E}) c_{\text{sys}}$$





- Bayesian approach
  - $\rightarrow posterior = \frac{likelihood}{evidence} \cdot prior$
  - $\rightarrow$  (sometimes log) uniform priors
  - → evidence:  $Z = \int d\vec{\theta} \ likelihood \cdot prior$ (→ likelihood averaged over parameter space weighted with priors)
- sample posterior
  - $\rightarrow$  detect multiple maxima?
- model comparison via Bayes factor  $Z_1/Z_2$ 
  - $\rightarrow$  quantitative way of measuring preference of model 1 over model 2
  - $\rightarrow$  metric scale crucial

# **Forward folding**

→ fit model to absorbed measurements of multiple detectors



Counts rate 
$$(E) = \int d\hat{E} \frac{dN_{source}}{dE \, dt \, dA} (\hat{E}) exp(-\tau(\hat{E})) A_{eff}(E,\hat{E}) c_{sys}$$



# **Reduced SSC model**

- $\rightarrow$  incorporates 2 types of solutions
- 1. double hump solution (SSC):

2. single hump solution (syn. only)



# **Forward folding**

→ fit model to absorbed measurements of multiple detectors



Counts rate 
$$(E) = \int d\widehat{E} \, \frac{dN_{\text{source}}}{dE \, dt \, dA} \left(\widehat{E}\right) \, exp\left(-\tau(\widehat{E})\right) \, A_{\text{eff}}\left(E,\widehat{E}\right) \, c_{\text{sys}}$$



#### Instrument response for single detector



- detector consists of many energy channels
  - $\rightarrow$  energy dispersion
- we cannot simply invert (unfold) this matrix

 $\rightarrow$  forward folding

eff. area [cm<sup>2</sup>]

#### Instrument response for single detector



# **Forward folding**

→ fit model to absorbed measurements of multiple detectors



Counts rate 
$$(E) = \int d\hat{E} \frac{dN_{source}}{dE dt dA} (\hat{E}) \exp(-\tau(\hat{E})) A_{eff}(E, \hat{E}) c_{sys}$$
  
and  
Background rate different detectors have different statistics!





3

1 -

0

-1

-3

106

l D o oko do LOCIL a LAdou a a Joan 60.44

energy [eV]

107

106

#### **Fermi LAT**



#### $\rightarrow$ single photon counter

#### **Fermi LAT**



 $\rightarrow$  single photon counter

 $\rightarrow$  spectral index not really constrained 58

## **Building up the picture**



## **Building up the picture**





Ajello et al. 2018, joint Swift/Fermi analysis

Ajello et al. 2019, 2nd Fermi GRB catalogue

• flat spectra (spectral index  $\approx 2$ ) are not uncommon!

#### **Building up the picture**



esiduals [ $\sigma$ ]



flat over 9 orders of magnitude!

#### **Preference for new component?**

Bayes factor for new component



#### **Preference for new component?**

Bayes factor for new component



# **Stability of Preference: LAT**

Bayes factor for new component





- shift LAT time selection window by 5% (2.1s)
- leave out LAT completely
  - →LAT not very strong

# **Stability of Preference: XRT**

Bayes factor for new component



- systematic cross calibration uncertainty limited to 15% (a.k.a. floating norm or effective area correction)
- leave out XRT completely

#### → XRT drives new component!

# Fitting a reduced SSC model





# Fitting a reduced SSC model



## Take away messages

- SSC spectra are mirroring a smoothly BPL electron distribution
- We need more **bright**, **nearby** GRBs (without moonlight!)
- GRB 190114C is no clear camel type
   →in particular no clear dromedary!





# Take away messages

- SSC spectra are mirroring a smoothly BPL electron distribution
- We need more **bright**, **nearby** GRBs (without moonlight!)
- GRB 190114C is no clear camel type
   →in particular no clear dromedary!





#### Thank you!