M. Klinger-Plaisier, 26.02.2025

AM³

Workshop on Numerical Multi Messenger Modelling

in collaboration with A. M. Taylor, W. Winter, C. Yuan, X. Rodrigues, A. Rudolph, S. Gao, G. Fichet de Clairfontaine, A. Fedynitch, M.Pohl

https://maklinger.github.io/ - m.klinger@uva.nl

INSTITUUT

The AM³ Team

Gao

Klinger-Plaisier

Rudolph

Rodrigues

×XX ×XX

UvA

Fichet De Clairfontaine

Fedynitch

Winter

Pohl

where? \rightarrow GRB afterglow

how? \rightarrow relativistic shock, but how exactly?

acceleration

particle & non-thermal energy reservoir (cosmic rays)

new constraining TeV spectra! instrument response (\rightarrow GeV)

M. Klinger-Plaisier, 26.02.2025, AM³ & GRB afterglows

×××

×××

××××

×××

 Flat power-law spectra extending up to >TeV

- Single component?
- No preference at counts-level
- How to interpret this?

data from: MAGIC Nature 575 (2019) Swift+Fermi ApJ 890 (2020) MK++ MNRAS 520 (2023) H.E.S.S. Science 372 (2021) Zhang++ ApJL 956 (2023) Liu++ APJL 943 (2023) Tavani++ ApJL 956 (2023) LHAASO Science 380 (2023) MK++ MNRAS 529L (2024)

×××

Lorentz factors up to few 100 \rightarrow quasi-isotropic outflow

afterglow = radiation from blast wave behind shock

outflow = blast wave

images: DESY, Science Communication Lab

Ř

afterglow = radiation from blast wave behind shock

compressed into pancake shape

Piran Rev. Mod. Phys. 76, 1143 (2005)

Pancake dynamics

energy conservation:

- \rightarrow sweeping up
- → slowing down

power-law deceleration (Blandford&McKee 1976)

$$\to \Gamma(t_{\rm obs}) \propto 100 \, \left(\frac{E_{\rm kin,iso}}{10^{54} erg}\right)^{\frac{1}{8}} \left(\frac{1cm^{-3}}{n_{\rm u}}\right)^{\frac{1}{8}} \left(\frac{100s}{t_{\rm obs}}\right)^{\frac{3}{8}}$$

Ň××

Energy conversion at the shock

Astrophysical Multi-Messenger Modeling (AM³)

→ 1 homogeneous, isotropic fluid cell

→ solve comoving transport equations

for species $i \in [p, n, e, \pi, \mu, \nu, \gamma]$

$$\partial_{t}n_{i} = Q + \partial_{E}(\dot{E}n_{i}) - \alpha n_{i}$$

$$\int_{0}^{1} \int_{0}^{1} depend \text{ in general on } E, t, n_{j}$$
particle number density
$$n_{i}(E, t) = \frac{\partial^{2}N_{i}}{\partial E \partial V}$$

M. Klinger-Plaisier, 26.02.2025, AM³ & GRB afterglows

AM³ workflow

estimate the coefficients Q, \dot{E}, α (time scales) based on current state of system

evolve particle densities n_i in time for small step

AM³ workflow

estimate the coefficients Q, \dot{E}, α (time scales) based on current state of system

evolve particle densities n_i in time for small step

××××

Estimate the coefficients

	e_	e ⁺	γ	n	p	ν	μ^{\pm}	π^{\pm}
Injection	$Q_{e^-,\mathrm{inj}}$	_	$Q_{\gamma,\mathrm{inj}}$	_	$Q_{p,\mathrm{inj}}$	_	—	—
Escape	$lpha_{e^-,\mathrm{esc}}$	$\alpha_{e^+,\mathrm{esc}}$	$lpha_{\gamma,\mathrm{esc}}$	$\alpha_{n,\mathrm{esc}}$	$lpha_{p, ext{esc}}$	$lpha_{ u,\mathrm{esc}}$	$lpha_{\mu,\mathrm{esc}}$	$lpha_{\pi,\mathrm{esc}}$
Synchrotron	$\dot{E}_{e^-,{ m SY}}$	$\dot{E}_{e^+,\mathrm{SY}}$	$\alpha_{\gamma,\mathrm{SY}}, Q_{\gamma,\mathrm{SY}}$	_	$\dot{E}_{p,\mathrm{SY}}$	_	$\dot{E}_{\mu,\mathrm{SY}}$	$\dot{E}_{\pi,\mathrm{SY}}$
Inverse Compton	$\dot{E}_{e^-,\mathrm{IC}}$	$\dot{E}_{e^+,\mathrm{IC}}$	$\alpha_{\gamma,\mathrm{IC}}, Q_{\gamma,\mathrm{IC}}$	_	$\dot{E}_{p,\mathrm{IC}}$	_	$\dot{E}_{\mu,\mathrm{IC}}$	$\dot{E}_{\pi,\mathrm{IC}}$
Pair annihilation	$Q_{e^-,\mathrm{pair}}$	$Q_{e^+,\mathrm{pair}}$	$lpha_{\gamma,\mathrm{pair}}$	_	_	_	—	—
Bethe-Heitler	$Q_{e^-,{ m BH}}$	$Q_{e^+,\mathrm{BH}}$	_	_	$\dot{E}_{p,\mathrm{BH}}$	—	—	_
Photo-pion	_	_	$\alpha_{\gamma, p\gamma}, Q_{\gamma, p\gamma}$	$\alpha_{n,\mathrm{p}\gamma}, Q_{n,\mathrm{p}\gamma}$	$\alpha_{p,\mathrm{p}\gamma}, Q_{p,\mathrm{p}\gamma}$	—	_	$Q_{\pi,\mathrm{p}\gamma}$
Proton-proton	—	_	$Q_{\gamma,\mathrm{pp}}$	_	$\dot{E}_{p,\mathrm{pp}}$	_	_	$Q_{\pi,\mathrm{pp}}$
Adiabatic/Expansion	$\dot{E}_{e^-,\mathrm{ad}}, lpha_{e^-,\mathrm{exp}}$	$\dot{E}_{e^+,\mathrm{ad}}, \alpha_{e^+,\mathrm{exp}}$	$lpha_{\gamma, ext{exp}}$	$\dot{E}_{p,\mathrm{ad}}, \alpha_{p,\mathrm{exp}}$	$\alpha_{n, \exp}$	$\alpha_{ u,\mathrm{exp}}$	$\dot{E}_{\mu,\mathrm{ad}}, \alpha_{\mu,\mathrm{exp}}$	$\dot{E}_{\pi,\mathrm{ad}}, \alpha_{\pi,\mathrm{exp}}$
Pion Decay	_	_	_	_	_	$Q_{\nu,\pi-{ m dec}}$	$Q_{\mu,\pi-{ m dec}}$	$lpha_{\pi,\pi- ext{dec}}$
Muon Decay	$Q_{e^-,\mu-{ m dec}}$	$Q_{e^+,\mu- m dec}$	_	_	_	$Q_{ u,\mu- m dec}$	$lpha_{\mu,\mu- ext{dec}}$	_

 \rightarrow see appendix of <u>Klinger et al. 2024 ApJS 275 4</u> for details

Ň×

 \rightarrow including photons

→ including muons and pions from cascade

 \rightarrow effect on (quasi) steady state $\propto Q \times \tau_{\min}$

AM³ workflow

estimate the coefficients **Q**, **Ė**, α (time scales) based on current state of system

evolve particle densities n_i in time for small step

fast solver combining

- → tridiagonal matrix method
- → semi-analytical approximations
- → see Klinger et al. 2024 ApJS 275 4 for details (or my talk from last year)

Particle Densities $\rightarrow AM^3$ is trackable

××

Trackable

XX

Trackable

××

Trackable

XX

Trackable - pair annihilation

××

Trackable - photo-pion cascade: $p\gamma \rightarrow \pi$

××

Trackable - photo-pion cascade: $p\gamma \rightarrow \pi \rightarrow \mu$

×

Trackable - photo-pion cascade: $p\gamma \rightarrow \pi \rightarrow \mu \rightarrow e^{\pm}$

×

Which scenarios fit GRB afterglow observations?

data from: MAGIC Nature 575 (2019) Swift+Fermi ApJ 890 (2020) MK++ MNRAS 520 (2023) H.E.S.S. Science 372 (2021) Zhang++ ApJL 956 (2023) Liu++ APJL 943 (2023) Tavani++ ApJL 956 (2023) LHAASO Science 380 (2023) MK++ MNRAS 529L (2024)

40

M. Klinger-Plaisier, 26.02.2025, AM³ & GRB afterglows

××××

Systematic parameter scan - selection

parameter set

××× ×

Systematic parameter scan - selection

××× ××

Systematic parameter scan - selection

Systematic parameter scan

Extended Synchrotron Scenario

Proton Synchrotron Scenario

Proton-Proton Cascade Scenario

Proton-Photon Cascade Scenario

Large energy requirements of $10^{57} erg$?

massive star collapse

 \rightarrow accreted mass $M \approx 10 M_{\odot}$

 $\Rightarrow \epsilon_{kin} \approx 10\%$ converted to kinetic energy of outflow

 \rightarrow into cone with opening angle $\theta = 3^{\circ}$

$$\rightarrow E_{\text{kin,iso}} \approx 10^{57} erg \left(\frac{M}{10M_{\odot}}\right) \left(\frac{\varepsilon_{\text{kin}}}{0.1}\right) \left(\frac{3^{\circ}}{\theta}\right)^2$$

→ extreme, but not crazy!

Scenarios

observations:

something

close to

×××

UvA

advantages: limitations: bright Klein-Nishina suppression bright Extended syn $\eta \ll 1$ (super Bohm) simple Proton syn bright exponential cut-off extends *pp*-cascade inefficient to >10TeV

bright

+ protons $p\gamma$ -cascade

SSC

electrons

electrons

extreme energy + density

Scenarios

observations:

something

close to

×××

UvA

dvantages: limitations:

right Klein-Nishina suppression

Extended syn bright \rightarrow no scenario really \rightarrow no scenario really convincing exponential cut-off \rightarrow multi-zone?

pp-cascade

extenas o >10TeV

nefficient

de bright

extreme energy + density

electrons

+ protons

electrons

GRB afterglows to power UHECRs?

- UHECRs: $E_p > 10^{18} eV$
 - ightarrow p-syn, $p\gamma$ -cascade

total energy?

- → assume all UHECRs powered by GRB afterglows of same type
- \rightarrow at rate ~1 Gpc⁻³ yr⁻¹
- \rightarrow total required power: $\sim 10^{53} \frac{erg}{Gpc^3yr}$
- → required energy per GRB:
- $E_{\rm UHECR,iso} \approx 10^{53} erg \approx \varepsilon_{\rm esc} f_{\rm bol} \varepsilon_p E_{\rm kin,iso}$

→ compatible with powering the UHECRs

GRB afterglows to power UHECRs?

UHECRs: $E_p > 10^{18} eV$

 $\rightarrow p$ -syn, $p\gamma$ -cascade

total energy?

- → assume all UHECRs powered by GRB afterglows of same type
- \rightarrow at rate ~1 Gpc⁻³ yr⁻¹

 \rightarrow total required power: $\sim 10^{53} \frac{erg}{Gpc^3yr}$

 \rightarrow required energy per GRB:

 $E_{\rm UHECR,iso} \approx 10^{53} erg \approx \varepsilon_{\rm esc} f_{\rm bol} \varepsilon_p E_{\rm kin,iso}$

→ compatible with powering the UHECRs

rough estimate ($t \times EF_E$) against optimistic scenarios

Take Home

https://am3.readthedocs.io/en/latest/

contact-am3@desy.de

New **GRB afterglow** MWL spectra up to TeV energies

- → challenge single zone models
- → even when including lepto-hadronic scenarios
 - consistent with UHECR limits, low neutrino fluences
- → time to depart towards multizone
- → Klinger et al. ApJ 977 2 (2024)

Take Home

https://am3.readthedocs.io/en/latest/

contact-am3@desy.de

New **GRB afterglow** MWL spectra up to TeV energies

- → challenge single zone models
- → even when including lepto-hadronic scenarios
 - consistent with UHECR limits, low neutrino fluences
- → time to depart towards multizone
- → Klinger et al. ApJ 977 2 (2024)

Thank you for your attention!

Time-dependent \approx quasi-steady state

Ň

M. Klinger-Plaisier, 26.02.2025, AM³ & GRB afterglows

×××

Time scales - SSC scenario

Time scales - extended syn scenario

Time scales - *pp*-cascade scenario

××× ×

Time scales - $p\gamma$ -cascade scenario

××× ×

64

M. Klinger-Plaisier, 26.02.2025, AM³ & GRB afterglows

GRB afterglows detected at X-rays!

Swift satellite

data from: MAGIC Nature 575 (2019) Swift+Fermi ApJ 890 (2020) MK++ MNRAS 520 (2023) H.E.S.S. Science 372 (2021) Zhang++ ApJL 956 (2023) Liu++ APJL 943 (2023) Tavani++ ApJL 956 (2023) LHAASO Science 380 (2023) MK++ MNRAS 529L (2024)

69

×××

UvA

Fermi satellite

data from: MAGIC Nature 575 (2019) Swift+Fermi ApJ 890 (2020) MK++ MNRAS 520 (2023) H.E.S.S. Science 372 (2021) Zhang++ ApJL 956 (2023) Liu++ APJL 943 (2023) Tavani++ ApJL 956 (2023) LHAASO Science 380 (2023) MK++ MNRAS 529L (2024)

70