

GRB 221009A: Afterglow spectrum

Gamma group meeting 30.06.2023

Marc Klinger, Andrew Taylor, Tyler Parsotan, Andy Beardmore, Sebastian Heinz, Sylvia Zhu, Donggeun Tak

HELMHOLTZ WEIZMANN RESEARCH SCHOOL MULTIMESSENGER ASTRONOMY

HELMHOLTZ

THE ASTROPHYSICAL JOURNAL LETTERS, 946:L31 (14pp), 2023 March 20

© 2023. The Author(s). Published by the American Astronomical Society.

GRB 221009A: The BOAT

- the Brightest Of All Times!... all times?
- everyone looked at it!... fantastic MWL coverage?
- even LHAASO saw 18TeV photons! ... or 10TeV?
- best data set we have! Really ...?
- not so straight forward..

Time – energy window

Time-Energy-Window

Insight-HXMT, GECAM-C

- data up to 2ks
- GECAM-C: 20keV 6MeV
- spectral index ~ 2.1 (1.35-1.86ks)

GRD01 Background

50 60 70 80 90100

Energy [keV]

Revisit Orbit Background

30

40

Posterior Background Model

 high energy band (>200keV) harder (~1.6)

Ś

Rate [keV⁻¹

 10^{0}

 10^{-1}

DESY. | Gamma Group Meeting | M. Klinger, 30.06.2023

EOT spectrum

2.1±0.15 (20-200keV)

Time-Energy-Window

Fermi-GBM trigger T_0

LHAASO-WCDA onset $T_* = 226s$

Swift-BAT trigger (enters field of view)

Multiwavelength fit – 2 overlapping intervals

LHAASO-WCDA (KM2A even earlier)

 \rightarrow focus of our fit results to early afterglow

Data quality – how much can we trust the data?

Dust ring problematic

- XRT has 2 read-out modes
 - \rightarrow WT: windowed timing (fast read-out) \rightarrow PC: photon counting (slow read-out)
- XRT observed in WT mode until ~90ks
 - \rightarrow image read-out column-wise to 1D
 - → more complex source/background estimation

WT images – actual observations

Fermi-LAT: a GRB in the galactic plane

Model in a map → galactic background

4ks

22ks

DESY. | Gamma Group Meeting | M. Klinger, 30.06.2023

4 orbits of Fermi-LAT: galactic diffuse background!

Phenomenological Picture

Putting things together: XRT, BAT, LAT

Combined fits at 4ks: phenomenological picture

 \rightarrow power law!

Combined fits at 22ks: phenomenological picture

Reduced SSC model

Fireball model: Long Gamma-Ray Burst

• Lorentz factors up to few 100

 \rightarrow relativistic compression

- Quasi isotropic outflow
- Energetics:
 - $\rightarrow E_{\gamma,\text{iso}} = 10^{55} erg \text{ in } 1 10^4 keV$ $\rightarrow E_{\text{tot}} > \frac{\Omega}{4\pi} E_{\gamma,\text{iso}}$
 - \rightarrow comparable to SN !
- efficient converters of kinetic energy to radiation

One zone assumption

- Homogeneous shell of electrons/positrons and photons
- relativistic shock
 - \rightarrow injection of non-thermal particles (ε_e, ζ_e)
 - \rightarrow turbulent magnetic fields (ε_B)
- particles cool
- photons escape =>

see e.g. Piran 2005 for a detailed review

DESY. | Gamma Group Meeting | M. Klinger, 30.06.2023

Characteristic values of blast wave parameters

- energy conservation:
 - $\rightarrow E_{iso} = \Gamma^2(t_{obs}) M_{sw}(t_{obs}) c^2$ $\rightarrow t_{obs} = 4ks, n_{ISM} = 1cm^{-3}$ $\rightarrow \Gamma \sim 34$
- ram pressure (SRF):

$$\rightarrow p_{ram} \approx m_p c^2 n_{up} \Gamma^2$$

• magnetic field:
$$\frac{B^2}{8\pi} = \varepsilon_B p_{ram}$$

$$\rightarrow \varepsilon_B \sim 10^{-5} \rightarrow B \sim 0.03G$$
$$\rightarrow \varepsilon_B \sim 10^{-3} \rightarrow B \sim 0.3G$$

One zone modelling \rightarrow **AM3 to be public soon!**

Photon Spectrum: Synchrotron Self-Compton (SSC)

 \rightarrow Convolve electron spectrum with radiation kernel

Photon Spectrum: Synchrotron Self-Compton (SSC)

→ Convolve electron spectrum with radiation kernel

Reduced SSC model

- \rightarrow incorporates 2 types of solutions
- 1. double hump solution (SSC):

2. single hump solution (syn. only)

Synchrotron model fits

4ks: synchrotron model - simple fit

- break at few keV
 - \rightarrow low magnetic field $\varepsilon_B \sim 10^{-5}$
- power law regime from BAT to LAT
 - \rightarrow photon spectral index 2.15
 - \rightarrow electron spectral index 2.3
- BAT overshot
 - \rightarrow XRT floating norm
- cut-off position fixed ($\eta = 1$)
 - \rightarrow correlated to photoelectric absorption

4ks: departure 1 – XRT floating

- seems to overdo it
- slight shift of peak + hardening + absorption
 - \rightarrow at 10% level (log)
- does not affect main conclusions dramatically

4ks: departure 2 – free η

fit seems to get unstable:

- XRT prefers extremely hard spectrum below break energy
 - → overestimates quality of photoelectric absorption
- spectral index below and above break energy linked
 - \rightarrow hardening of spectrum above break
 - compensated by early cut-off

 \rightarrow much softer LAT spectrum

22ks: synchrotron model - simple fit

- lower statistics
- similar picture:
 - \rightarrow spectral index slightly softer than 2
 - \rightarrow break at few keV less clear
- prefers $\eta < 1$ anyways
- extended floating drives it towards one single power law
 - \rightarrow large uncertainties

on the SSC component

LHAASO light curve extrapolation acrobatics

LHAASO light curve extrapolation acrobatics

GRB 221009A

Other VHE GRB afterglows

Observational picture- all VHE GRBs flat up to TeV

GRB 180720B

XRT/BAT(earlier), HESS flat ? , flatish(1.6±1.6)

GRB 201216C

MAGIC -> z=1.1 -> EBL absorbed

GRB 190114C

Stability of Preference: XRT

Bayes factor for new component

- systematic cross calibration uncertainty limited to 15% (a.k.a. floating norm or effective area correction)
- LAT no crucial role!
- XRT drives new component!

- Ajello et al. 2019, 2nd Fermi GRB catalogue
- flat spectra (spectral index ≈ 2) are not uncommon!