Lepto-hadronic radiation modeling of gamma-ray burst afterglows

M.Klinger-Plaisier, 16.10.2024, NOVA Network 3 meeting

https://maklinger.github.io/ - m.klinger@uva.nl

Gamma-ray burst

Very high energies > 0.1 TeV photons

data from: MAGIC Nature 575 (2019) Swift+Fermi ApJ 890 (2020) MK++ MNRAS 520 (2023) H.E.S.S. Science 372 (2021) Zhang++ ApJL 956 (2023) Liu++ APJL 943 (2023) Tavani++ arXiv:2309.10515 LHAASO Science 380 (2023) MK++ MNRAS 529L (2024)

very early (~100s)

UvA M.Klinger-Plaisier, NOVA NW3, 16.10.24

2

data from: MAGIC Nature 575 (2019) Swift+Fermi ApJ 890 (2020) MK++ MNRAS 520 (2023) H.E.S.S. Science 372 (2021) Zhang++ ApJL 956 (2023) Liu++ APJL 943 (2023) Tavani++ arXiv:2309.10515 LHAASO Science 380 (2023) MK++ MNRAS 529L (2024)

× × × M.Klinger-Plaisier, NOVA NW3, 16.10.24

UvA

4

 \rightarrow MAGIC

Single component?

 Flat power-law spectra extending up to >TeV

> MAGIC Nature 575 (2019) Swift+Fermi ApJ 890 (2020) MK++ MNRAS 520 (2023) H.E.S.S. Science 372 (2021) Zhang++ ApJL 956 (2023) Liu++ APJL 943 (2023) Tavani++ arXiv:2309.10515 MK++ MNRAS 529L (2024)

××× M.Klinger-Plaisier, NOVA NW3, 16.10.24 UvA

→ MAGIC

Single component?

- Flat power-law spectra extending up to >TeV
- \rightarrow H.E.S.S. No preference at counts-level

MAGIC Nature 575 (2019) Swift+Fermi ApJ 890 (2020) MK++ MNRAS 520 (2023) H.E.S.S. Science 372 (2021) Zhang++ ApJL 956 (2023) Liu++ APJL 943 (2023) Tavani++ arXiv:2309.10515 MK++ MNRAS 529L (2024)

→ MAGIC

- Single component?
- Flat power-law spectra extending up to >TeV
- \rightarrow H.E.S.S. No preference at counts-level

\rightarrow How to interpret this?

data from: MAGIC Nature 575 (2019) Swift+Fermi ApJ 890 (2020) MK++ MNRAS 520 (2023) H.E.S.S. Science 372 (2021) Zhang++ ApJL 956 (2023) Liu++ APJL 943 (2023) Tavani++ arXiv:2309.10515 LHAASO Science 380 (2023) MK++ MNRAS 529L (2024)

What are GRB afterglows?

Main observations: photon spectra → **non-thermal** Interpretation: relativistic outflow → **relativistic shock**

The "standard" model: SSC radiation from a relativistic shock

M.Klinger-Plaisier, NOVA NW3, 16.10.24 UvA

 \rightarrow quasi-steady state

W_vA M.Klinger-Plaisier, NOVA NW3, 16.10.24

× Synchrotron self-Compton (SSC)

Time-dependent modelling:

\rightarrow show time-dependent results

Time-dependent modelling: AM³

arXiv:2312.13371

- solve transport eq.
- publicly available
- documented
- fast
- trackable
- C++ and python3
- \rightarrow talk to me

\rightarrow show time-dependent results

The SSC scenario

UvA M.Klinger-Plaisier, NOVA NW3, 16.10.24

Alternatives?

\times faster than Bohm acceleration: $\eta \ll 1$

- → 1 zone: violation of MHD conditions Kumar++ MNRAS 427 (2012), Huang++ APJ 925 (2022)
- → 2 zone: decouple acceleration zone from radiation zone Khangulyan++ APJ 947 (2021)
- extended electron synchrotron component

 $t_{\rm acc} = \eta \frac{E_e}{eBc}$

 $E_{\gamma,\text{syn}}^{\text{max}} \gg 100 \text{MeV}$

advantages	limitations
 bright directly yields single power law 	- requires $\eta \ll 1$ (challenging in 1 zone)

UvA M.Klinger-Plaisier, NOVA NW3, 16.10.24

$_{\rm X}$ faster than Bohm acceleration: $\eta \ll 1$

- → 1 zone: violation of MHD conditions Kumar++ MNRAS 427 (2012), Huang++ APJ 925 (2022)
- → 2 zone: decouple acceleration zone from radiation zone Khangulyan++ APJ 947 (2021)
- → extended electron synchrotron component

× involve hadrons

→ proton synchrotron as VHE (Isravel++ ApJ 955 (2023), Cao++ arXiv:2310.08845)

advantages	limitations
- bright	 fine-tuned exponential cut-off → peak flux, peak energy, cut-off shape

$_{\rm X}$ faster than Bohm acceleration: $\eta \ll 1$

- → 1 zone: violation of MHD conditions Kumar++ MNRAS 427 (2012), Huang++ APJ 925 (2022)
- → 2 zone: decouple acceleration zone from radiation zone Khangulyan++ APJ 947 (2021)
- → extended electron synchrotron component
- × involve hadrons
 - → proton synchrotron as VHE (Isravel++ ApJ 955 (2023), Cao++ arXiv:2310.08845)
 - → pp-cascade: larger densities such as in molecular clouds

advantages	limitations
- flat VHE component (≫ 10 TeV)	 inefficient fine-tuned baryonic loading ($\varepsilon_e/\varepsilon_p \ll 1$)

\star faster than Bohm acceleration: $\eta \ll 1$

- → 1 zone: violation of MHD conditions Kumar++ MNRAS 427 (2012), Huang++ APJ 925 (2022)
- → 2 zone: decouple acceleration zone from radiation zone Khangulyan++ APJ 947 (2021)
- → extended electron synchrotron component

× involve hadrons

- → proton synchrotron as VHE (Isravel++ ApJ 955 (2023), Cao++ arXiv:2310.08845)
- $\rightarrow pp$ -cascade: larger densities such as in molecular clouds
- $\rightarrow p\gamma$ -cascade: increase injected power

advantages	limitations
- bright	 extreme density + energy requirements fine-tuned baryonic loading (\varepsilon_e / \varepsilon_p \le 1)

Summary

- GRB afterglows are an excellent opportunity to observe relativistic shocks
- x now observed at VHE
- × systematic scan of lepto-hadronic scenarios
 - → SSC: KN suppression
 - ightarrow extended syn: $\eta \ll 1$
 - → proton-syn: exponential cut-off
 - → pp-cascade: flat but inefficient
 - $\rightarrow p\gamma$ -cascade: extreme energy/density requirements
 - → no perfect fit yet! Multi-zone?

Backup

UvA M.Klinger-Plaisier, NOVA NW3, 16.10.24

Large energy requirements?

× massive star collapse

- \rightarrow accreted mass M $\approx 10 M_{\odot}$
- $ightarrow \varepsilon_{kin} \approx 10\%$ converted to kinetic energy of outflow
- \rightarrow into cone with opening angle $\theta = 3^{\circ}$

$$\rightarrow E_{kin,iso} \approx 10^{57} erg \left(\frac{M}{10M_{\odot}}\right) \left(\frac{\varepsilon_{kin}}{0.1}\right) \left(\frac{3^{\circ}}{\theta}\right)^{2}$$

Time scales

Neutrinos

