On the camel nature of GRB Afterglows

Marc Klinger*, 28.11.2023, at SPIMAX, Oxford

In Collaboration with Andrew Taylor, Walter Winter, Sylvia Zhu, Chengchao Yuan, Donggeun Tak, Andrew Beardmore, Tyler Parsotan, Sebastian Heinz

HELMHOLTZ WEIZMANN RESEARCH SCHOOL MULTIMESSENGER ASTRONOMY

HELMHOLTZ

*marc.klinger@desy.de

https://maklinger.github.io/

Are gamma ray burst afterglows...

Or

Dromedaries

Bactrians

DESY. | SPIMAX | M.Klinger, 28.11.23

https://www.balisafarimarinepark.com/what-makes-camel-became-a-unique animal/

https://en.wikipedia.org/wiki/File:07 Camel Profile Silverton **MSN** .2007

\rightarrow would be nice to see more of the camel!

GRB afterglows detected at VHE!

 \rightarrow MAGIC

\rightarrow H.E.S.S.

\rightarrow LHAASO

data from: MAGIC Nature 575 (2019) Swift+Fermi ApJ 890 (2020) MK++ MNRAS 520 (2023) H.E.S.S. Science 372 (2021) Zhang++ ApJL 956 (2023) Liu++ APJL 943 (2023) Tavani++ arXiv:2309.10515 LHAASO Science 380 (2023) MK++ subm. arXiv:2308.13854

GRB afterglows detected at VHE!

 \rightarrow MAGIC

 \rightarrow H.E.S.S.

 \rightarrow LHAASO

flat spectra extending up to >TeV

data from: MAGIC Nature 575 (2019) Swift+Fermi ApJ 890 (2020) MK++ MNRAS 520 (2023) H.E.S.S. Science 372 (2021) Zhang++ ApJL 956 (2023) Liu++ APJL 943 (2023) Tavani++ arXiv:2309.10515 LHAASO Science 380 (2023) MK++ subm. arXiv:2308.13854

Why to care about GRBs?

- non-thermal particle acceleration at shocks ?
- relativistic realisation: afterglow of a gamma-ray burst
- observational handle: photon spectra
- connection of observed photon spectra to underlying physics based on many assumptions → room for improvement
- new observational window at VHE

 \rightarrow crisis (= we can learn something new!)

Current models struggle to predict observed photon spectra of the early afterglow of long GRBs!

standard in community: 2 component SSC

Current models struggle to predict observed photon spectra of the early afterglow of long GRBs!

Outline

- GRB afterglow modeling basics
 - → what do I actually mean by *Dromedary* and *Bactrian*?

- observational picture at high energies
 - → GRB 190114C, GRB 190829A, GRB 221009A
- hadronic ways out of crisis

OBSERVATIONAL picture

• we observe flashes of X/γ -rays isotropically distributed on sky

OBSERVATIONAL picture

- we observe flashes of X/γ-rays isotropically distributed on sky
- we find a complex prompt phase and smooth afterglow in the light curve

OBSERVATIONAL picture

- we observe flashes of X/γ -rays ulletisotropically distributed on sky
- we find a complex prompt phase ulletand smooth afterglow in the light curve
- we have associated one short burst to a NS-NS-merger and many some long ones to SN

OBSERVATIONAL picture

- we observe flashes of X/γ-rays isotropically distributed on sky
- we find a complex prompt phase and smooth afterglow in the light curve
- we have associated one short burst to a NS-NS-merger and many some long ones to SN

THEORETICAL picture

- accelerate a shell of plasma (jet) and dump it into a circum-burst medium
- different mechanisms convert the kinetic energy eventually into photons that we can observe at Earth (and other messengers?)

→ Fireball model

Fireball model: Long GRB

DESY, Science Communication Lab

Fireball model: Long GRB

Fireball model: Long GRB

- Lorentz factors up to few 100
 - \rightarrow relativistic compression
- Quasi isotropic outflow
- Energetics:
 - \rightarrow observed up to: $E_{\rm iso} \sim 10^{55} {\rm erg}$
 - $\rightarrow E_{\rm tot} = \frac{\Omega}{4\pi} E_{\rm iso} \sim 10^{51} {\rm erg}$
 - $\rightarrow\,$ comparable to SN !
- efficient converters of kinetic energy to radiation

Blandford & McKee 1976

Photon spectrum: Synchrotron from a convolution

Photon spectrum: Synchrotron Self-Compton (SSC)

→ Convolve electron spectrum with radiation kernel

Time-dependent one zone modelling

AM³ - finally public!

Astrophysical Multi-Messenger Modeling

- solve transport equations time dependent!
- for protons, electrons, photons + pions, muons, neutrinos
- Syn, IC, pair-prod., $p\gamma$, pp, Bethe-Heitler, decays,...
- speed optimized (steady state in ~10s)
- written in C++, interface to python
- used already for blazars (initially Gao++ 2017), Gao++ APJ 843 (2017) GRBs, TDEs
- including documentation!

Astrophysical Multi-Messenger Modeling

Gao

Rudolph Rodrigues

Fichet De Fedynitch Winter Yuan Pohl Clairfontaine

https://gitlab.desy.de/am3/am3

Beyond the SSC model

Ideas:

- faster than Bohm acceleration: $\eta \ll 1$
 - → 1 zone: violation of MHD conditions Kumar++ MNRAS 427 (2012), Huang++ APJ 925 (2022)
 - → 2 zone: decouple acceleration zone from radiation zone Khangulyan++ APJ 947 (2021)
 - \rightarrow extended electron synchrotron component

 $t_{\rm acc} =$

Problem: how to explain $\eta \ll 1$?

Extended synchrotron vs SSC

Instrument recap

Instrument recap

Instrument recap

ICRC2021

DESY. | SPIMAX | M.Klinger, 28.11.23

GRB 190114C: SSC vs extended syn

- MAGIC observation:
- z = 0.43 (EBL) + moonlight

→ uncertain spectral index at TeV $-2.2 \pm 0.3 \pm 0.2$ (stat) (sys) MAGIC Nature 575 (2019)

- Fermi-LAT not constraining (5+6 photons)
- counts level fit to reduced SSC model

GRB 190114C: SSC vs extended syn

MAGIC observation: •

- z = 0.43 (EBL) + moonlight
- \rightarrow uncertain spectral index at TeV -2.2 + 0.3 + 0.2(stat) (sys) MAGIC Nature 575 (2019)
- Fermi-LAT not constraining (5+6 photons)
- counts level fit to reduced SSC model

residuals $[\sigma]$

GRB 190114C: SSC vs extended syn

MK++ MNRAS 520 (2023)

- MAGIC observation:
- z = 0.43 (EBL) + moonlight

→ uncertain spectral index at TeV $-2.2 \pm 0.3 \pm 0.2$ (stat) (sys) MAGIC Nature 575 (2019)

- Fermi-LAT not constraining (5+6 photons)
- counts level fit to reduced SSC model

→ statistical test of preference?

Preference for new component?

Bayes factor for new component

Preference for new component?

Stability of Preference: LAT

Bayes factor for new component

MK++ MNRAS 520 (2023)

Stability of Preference: XRT

Bayes factor for new component

MK++ MNRAS 520 (2023)

- systematic cross calibration uncertainty limited to 15% (a.k.a. floating norm or effective area correction)
- leave out XRT completely

→ XRT drives new component!

Fitting a reduced SSC model

Fitting a reduced SSC model

DESY. | SPIMAX | M.Klinger, 28.11.23

GRB 190829A: SSC vs extended syn

• $z = 0.08 \rightarrow \text{low EBL abs.}$

→ spectral index at TeV:

$$\approx -2 \pm 0.1 \pm 0.26$$

(stat) (sys)

• poor MWL coverage

- counts level fit:
 proforance for sin
- → preference for single component!

LHAASO Collaboration 2023:

No softening up to at least 10 TeV!

(note $z = 0.15 \rightarrow \text{EBL abs.} > \text{few TeV}$)

\rightarrow incompatible with SSC

GRB 221009A

EF_E [erg/cm²s]

DESY. | SPIMAX | M.Klinger, 28.11.23

57

10¹²

Current models struggle to predict observed photon spectra of the early afterglow of long GRBs!

DESY. | SPIMAX | M.Klinger, 28.11.23

There is more beyond the SSC model

Ideas:

- faster than Bohm acceleration: $\eta \ll 1$
 - → 1 zone: violation of MHD conditions Kumar++ MNRAS 427 (2012), Huang++ APJ 925 (2022)
 - → 2 zone: decouple acceleration zone from radiation zone Khangulyan++ APJ 947 (2021)
 - \rightarrow extended electron synchrotron component
- involve hadrons
 - → proton synchrotron component for VHE emission (Isravel++ ApJ 955 (2023), Cao++ arXiv:2310.08845)

Proton-Synchrotron model

Problem: proton synchrotron component at exponential cut-off!

Proton-Synchrotron model

Interesting: neutrinos! But fluence not too high...

There is more beyond the SSC model

Ideas:

- faster than Bohm acceleration: $\eta \ll 1$
 - → 1 zone: violation of MHD conditions Kumar++ MNRAS 427 (2012), Huang++ APJ 925 (2022)
 - → 2 zone: decouple acceleration zone from radiation zone Khangulyan++ APJ 947 (2021)
 - \rightarrow extended electron synchrotron component
- involve hadrons
 - → proton synchrotron component for VHE emission (Isravel++ ApJ 955 (2023), Cao++ arXiv:2310.08845)
 - \rightarrow cascade from py interactions for prompt VHE emission (Cao++ arXiv:2310.11821)
 - \rightarrow cascade from pp interactions

Other points with room for improvement

- high energy spectra
 - \rightarrow maximum energy? confinement?
- low energy injection spectra
 - \rightarrow thermal particles? \rightarrow low energy spectra?
- magnetic fields (generation, decay, scales,...)

 \rightarrow more than " ε_B "

- description of systematic absorption effects
 - \rightarrow dust+photoel. @ optical x-ray, EBL @ VHE

Conclusions

- Long GRB afterglows show flat spectra extending to more than 10TeV
 - \rightarrow challenging to explain with current models
 - \rightarrow in particular for SSC scenario
- Need to think about other scenarios:
 - \rightarrow extended synchrotron model
 - \rightarrow proton synchrotron
 - \rightarrow cascade from pp interactions

Conclusions

- Long GRB afterglows show flat spectra extending to more than 10TeV
 - \rightarrow challenging to explain with current models
 - \rightarrow in particular for SSC scenario
- Need to think about other scenarios:
 - \rightarrow extended synchrotron model
 - \rightarrow proton synchrotron
 - \rightarrow cascade from pp interactions

Thank you!

