PhD Defence

Marc Klinger 01.11.2024

Time-dependent Modelling of Gamma-Ray Burst Afterglows

Supervised by Walter Winter & Andrew Taylor

in collaboration with A. Beardmore, A. Fedynitch, G. Fichet de Clairfontaine, S. Gao, S. Heinz, T. Parsotan, M. Pohl, X. Rodrigues, A. Rudolph, D. Tak, E. Waxman, C. Yuan, S. Zhu

ESSENGER ASTRONOMY

HELMHOLTZ

fireworks on new year's sky 🔺

astrophysical explosions in universe

fireworks on new year's sky

astrophysical explosions in universe

DESY. PhD Defence | Marc Klinger

unaware of outflow

unaware of outflow

unaware of outflow

unaware of outflow

unaware of outflow

shock

Astrophysical shocks shine too

fireworks on new year's sky

astrophysical explosions in universe

DESY. PhD Defence | Marc Klinger

Observational picture

 flashes of X/γ-rays isotropically distributed on sky

2. Fermi-LAT GRB Catalogue [Ajello et al. ApJ 878 52 (2019)]

- flashes of X/γ-rays isotropically distributed on sky
- complex prompt phase and smooth afterglow in the light curve

- flashes of X/γ-rays isotropically distributed on sky
- complex prompt phase and smooth afterglow in the light curve
- duration: long vs. short
 - 1x short \rightarrow merger of 2 neutron stars
 - many long → supernovae

- flashes of X/γ-rays isotropically distributed on sky
- complex prompt phase and smooth afterglow in the light curve
- duration: long vs. short
 - 1x short \rightarrow merger of 2 neutron stars
 - many long \rightarrow supernovae
- power-law energy spectra

- flashes of X/γ-rays isotropically distributed on sky
- complex prompt phase and smooth afterglow in the light curve
- duration: long vs. short
 - 1x short \rightarrow merger of 2 neutron stars
 - many long \rightarrow supernovae
- power-law energy spectra
- recent detections up to TeV γ -rays

Observational picture

- flashes of X/γ-rays isotropically distributed on sky
- complex prompt phase and smooth **afterglow** in the light curve
- duration: long vs. short
 - 1x short \rightarrow merger of 2 neutron stars
 - many long \rightarrow supernovae
- power-law energy spectra
- recently detected up to TeV γ-rays

My PhD: Interpretation of the observed power-law energy spectra of the afterglows of long GRBs with TeV detection

Publications

- 1. *"Fitting MAGIC"* Klinger et al. MNRAS 520 (2023)
- 2. *"Fitting LHAASO"* Klinger et al. MNRAS 529L (2024)
- 3. *"AM³"* Klinger et al. ApJS 275 4 (2024)
- 4. *"Modelling"* Klinger et al. subm. to ApJ (2024) [arXiv:2403.13902]

massive, rotating star

images: DESY, Science Communication Lab

DESY. PhD Defence | Marc Klinger

Lorentz factors up to few 100 \rightarrow quasi-isotropic outflow

images: DESY, Science Communication Lab

images: DESY, Science Communication Lab

afterglow = radiation from blast wave behind shock

images: DESY, Science Communication Lab

afterglow = radiation from blast wave behind shock

compressed into pancake shape

Piran Rev. Mod. Phys. 76, 1143 (2005)

images: DESY, Science Communication Lab

relativistic outflow → relativistic shock particle acceleration & radiation mechanism

uncertain assumptions

observations → power-law spectra

in this frame

$$p_{\rm ram}^{\rm u} = \Gamma_{\rm u}^2 \rho_{\rm u} c^2$$
with $\rho_{\rm u} = n_{\rm u} m_{\rm u}$

heat (isotropic)

slower outflow (anisotropic)

kinetic energy/ ram pressure

$$p_{\rm ram}^{\rm u} = \Gamma_{\rm u}^2 \rho_{\rm u} c^2$$
with $\rho_{\rm u} = n_{\rm u} m_p c^2$

51100

heat (isotropic)

slower outflow (anisotropic)

turbulent magnetic fields

kinetic energy/ ram pressure

$$p_{\rm ram}^{\rm u} = \Gamma_{\rm u}^2 \rho_{\rm u} c^2$$

with $\rho_{\rm u} = n_{\rm u} m_p c^2$

heat (isotropic)

slower outflow (anisotropic)

turbulent magnetic fields

non-thermal particles

$$\varepsilon_{\rm X} = rac{p_{\rm X}^{\rm d}}{p_{\rm ram}^{
m u}}$$

kinetic energy/ ram pressure

$$p_{\mathrm{ram}}^{\mathrm{u}} = \Gamma_{\mathrm{u}}^{2} \rho_{\mathrm{u}} c^{2}$$

with $ho_{\mathrm{u}} = n_{\mathrm{u}} m_{p} c^{2}$

Long GRB afterglow shocks shine

╋

continuous injection

energy losses

continuous injection

 \rightarrow power-law

energy losses

e.g., Sari et al. ApJ 497 L17 (1998)

Long GRB afterglow shocks shine

invisible

Mapping to photon spectrum

Mapping to photon spectrum

Mapping to photon spectrum

Long GRB afterglow shocks shine

Long GRB afterglow shocks shine

Steady-state approximation?

→ solve set of **coupled transport equations** like

$$\partial_t n_i = Q + \partial_E (\dot{E} n_i) - \alpha n_i$$
 for species *i*
depend in general on *E*, *t*, *n*_j

particle number density

$$n_i(E,t) = \frac{\partial^2 N_i}{\partial E \ \partial V}$$

Steady-state approximation?

→ solve set of **coupled transport equations** like

$$\partial_t n_i = Q + \partial_E (\dot{E} n_i) - \alpha n_i \quad \text{for species } i$$

$$\int \int depend \text{ in general on } E, t, n_j$$

particle number density

$$n_i(E,t) = \frac{\partial^2 N_i}{\partial E \ \partial V}$$

→ I developed a framework to perform time-dependent modelling of GRB afterglows

AM³ software

Astrophysical Multi-Messenger Modeling

- improved* original version of former group members
- major contributions to the publication team-effort

https://gitlab.desy.de/am3/am3

*co-implemented pp-interactions, made solver algorithm faster and more robust

AM³ software

Astrophysical Multi-Messenger Modeling

- improved* original version of former group members
- major contributions to the publication team-effort

 \rightarrow "AM³" paper

- AM³ solves transport equations
 - \rightarrow lepto-hadronic interactions
 - \rightarrow fast, trackable, FAIR** trendsetter
 - \rightarrow applied to other source types

*co-implemented pp-interactions, made solver algorithm faster and more robust **findable, accessible, interoperable, reusable

DESY. PhD Defence | Marc Klinger

https://gitlab.desy.de/am3/am3

Time-dependent = quasi-steady state

Long GRB afterglow shocks shine

AM³

Do the observations show the two bumps of the 1-zone SSC model?

3 GRBs

Swift satellite

Fermi satellite

68

very-high energy **VHE** ($E_{\gamma} > 0.1 TeV$)

→ MAGIC

Observations

→ MAGIC

single power-law component up to TeV energies?

SSC and ideas beyond

 \rightarrow faster than Bohm acceleration: $\eta \ll 1 \rightarrow$ needs careful justification!

e.g. Kumar++ MNRAS 427 (2012), Khangulyan++ APJ 947 (2021), Huang++ APJ 925 (2022), Groslj++ ApJL 963 L44 (2024)

statistical preference for single component!

DESY. PhD Defence | Marc Klinger
Observations

statistical preference for single component!

Observations

MAGIC GRB 190114C

"Fitting MAGIC" paper

MAGIC GRB 190114C – preference for a 2. component?

 \rightarrow XRT/cross calibration drives new component!

no stable preference for either scenario!

→ different from claim by MAGIC collaboration [MAGIC Nature 575 (2019)]

GRB afterglow observations up to TeV energies

GRB afterglow observations up to TeV energies

LHAASO GRB 221009A

- \rightarrow power law with $\gamma_{TeV} \approx 2.2$
- \rightarrow No softening up to at least 10 TeV

E [eV]

(note $z = 0.15 \rightarrow \text{EBL}$ abs. > few TeV)

 10^{2}

10³

3.9-4.5ks

21.6-22.1ks

 10^{4}

 10^{-6}

 10^{-7}

 10^{-8}

 10^{-9}

 10^{-10}

EF_E [erg/cm²s]

LHAASO GRB 221009A

- \rightarrow power law with $\gamma_{\rm TeV} \approx 2.2$
- \rightarrow No softening up to at least 10 TeV

(note $z = 0.15 \rightarrow \text{EBL}$ abs. > few TeV)

 \rightarrow in tension with SSC

Observational summary

advantages: limitations:

bright

Klein-Nishina suppression

Observational summary

electrons + protons → additional radiation channels!
→ systematic exploration needed!

Systematic parameter scan – selection

Systematic parameter scan – selection

Systematic parameter scan – selection

Proton synchrotron scenario

\rightarrow fine-tuned exponential cut-off

see also: Isravel et al. ApJ 955 (2023), Cao et al. Sci. Adv. 9 (2023)

Proton synchrotron scenario

\rightarrow fine-tuned exponential cut-off

see also: Isravel et al. ApJ 955 (2023), Cao et al. Sci. Adv. 9 (2023)

pp-cascade scenario

$p\gamma$ -cascade scenario

Summary

- Long GRB afterglows allow us to study the properties of relativistic shocks as multi-messenger fireworks
- I developed a framework for time-dependent modelling of GRB afterglows
 - \rightarrow publication of AM³ \rightarrow "AM3" paper
 - \rightarrow steady-state approximation is only good for intuition
- I performed model comparison at the counts-level
 - → GRB 190114C: inconclusive on \bigcirc vs \bigcirc *"Fitting MAGIC"* paper
 - \rightarrow GRB 221009A: with a single decaying component above x-rays \rightarrow *"Fitting LHAASO"* paper
- I systematically explored lepto-hadronic 1-zone scenarios which reproduce extended flat power-law spectra → *"Modelling"* paper
 - \rightarrow SSC, Extended syn, Proton syn, *pp*-cascade, *pγ*-cascade \rightarrow no convincing 1-zone scenario