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Relativistic?

• Be careful:

1. relativistic shock = shock moving at relativistic speeds

→ 𝛽Γ shock > 1

2. relativistic equation of state: particles in the fluid move at relativistic 

speeds

→ ⟨𝛽Γ⟩particle> 1
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Strong shocks

• as in the non-relativistic case a shock is said to be strong if:

Mach number ℳ =
𝛽𝑢Γ𝑢

𝛽𝑠,𝑢Γ𝑠,𝑢
> 1

→ then ℳ2 =
ram pressure

thermal pressure

• equivalent to cold upstream medium: 𝛽𝑠
2~

𝑝𝑢

𝜌𝑢
≪ 1

• both depending only on upstream frame (initial condition)

sound upstream
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Non-relativistic jumping conditions

mass

𝜌𝑑𝑣𝑑 = 𝜌𝑢𝑣𝑢

momentum

𝜌𝑑𝑣𝑑
2 + 𝑝𝑑 = 𝜌𝑢𝑣𝑢

2 + 𝑝𝑢

energy

𝑣𝑑
1

2
𝜌𝑑𝑣𝑑

2 +
ො𝛾

ො𝛾 − 1
𝑝𝑑 = 𝑣𝑢

1

2
𝜌𝑢𝑣𝑢

2 +
ො𝛾

ො𝛾 − 1
𝑝𝑢

number

𝑛𝑑𝛽𝑑 = 𝑛𝑢𝛽𝑢

𝜌 = 𝑚𝑝𝑛
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Non-relativistic jumping conditions

mass

𝜌𝑑𝑣𝑑 = 𝜌𝑢𝑣𝑢

momentum

𝜌𝑑𝑣𝑑
2 + 𝑝𝑑 = 𝜌𝑢𝑣𝑢

2 + 𝑝𝑢

energy

𝑣𝑑
1

2
𝜌𝑑𝑣𝑑

2 +
ො𝛾

ො𝛾 − 1
𝑝𝑑 = 𝑣𝑢

1

2
𝜌𝑢𝑣𝑢

2 +
ො𝛾

ො𝛾 − 1
𝑝𝑢

number

𝑛𝑑𝛽𝑑 = 𝑛𝑢𝛽𝑢
Γ

Γ2

Γ2

𝜌 = 𝑚𝑝𝑛
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Number conservation

• in rest frame: 𝑛

• define number flux 4 vector: 𝑁𝜇 = 𝑛𝑢𝜇 = 𝑛 Γ, Γ𝑣𝑖

• conservation of number of particles:

𝜕𝜇𝑁
𝜇 =

1

𝑐
𝜕𝑡 𝑛Γ + 𝜕𝑖 𝑛Γ𝛽

𝑖 = 0

• relativistic version of continuity equation (𝛽 ≪ 1: 𝜕𝑡𝑛 + ∇ 𝑛 Ԧ𝑣 = 0)

(in rest frame no flux and 𝜕𝑡𝑛 = 0)

𝜕𝜇𝑁
𝜇 = 0
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Energy, enthalpy,...  - density

• in relativistic physics new concept of rest mass

• sum up all internal/isotropic “energy reservoirs” of a fluid: enthalpy

→𝑤 = 𝜀int + 𝜌𝑐2 + 𝑝th

enthalpy: 𝑤

internal energy: 𝑒

rest mass of 

particles: 𝜌𝑐2
internal degrees of 

freedom: 𝜀𝑖𝑛𝑡

isotropic motion of 

ensemble of particles = 

thermal pressure: 𝑝𝑡ℎ

(internal) energy density 𝑒

internal degrees

of freedom
rest mass

density
thermal pressure

(also an energy density) different from 

non-relativistic definition:

𝑤 = 𝜀int + 𝑝th
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• energy and momentum are a combined concept in relativity

→ energy momentum tensor 𝑻𝝁𝝂 = 𝒘𝒖𝝁𝒖𝝂 + 𝒑𝐭𝐡𝒈
𝝁𝝂

• perfect fluid: no viscosity/heat conduction

→𝑇𝜇𝜈 =

𝑤Γ2 − 𝑝 𝑤Γ2𝛽1 𝑤Γ2𝛽2 𝑤Γ2𝛽3
⋮ 𝛽1

2Γ2𝑤 + 𝑝 𝛽1𝛽2Γ
2𝑤 𝛽1𝛽3Γ

2𝑤

𝛽2
2Γ2𝑤 + 𝑝 𝛽2𝛽3Γ

2𝑤

⋯ 𝛽3
2Γ2𝑤 + 𝑝

• 4 equations (1 energy + 3 mom.):

Conservation of energy and momentum

𝜕𝜇𝑇
𝜇𝜈 = 0

symmetric

energy density energy flux

isotropic pressure

momentum 

flux
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Shock rest frame and 1D

shock upstream (ahead)downstream (behind)

𝛽⊥,𝑢 ≡ 𝛽𝑢𝛽⊥,𝑑 ≡ 𝛽𝑑

𝑁𝜇 = 𝑛Γ, 𝑛𝛽Γ, 0 , 0

𝑇𝜇𝜈 =

𝑤Γ2 − 𝑝 𝑤Γ2𝛽 0 0

𝑤Γ2𝛽 β2Γ2𝑤 + 𝑝 0 0
0 0 𝑝 0
0 0 0 𝑝
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Conservation across shock

shock upstream (ahead)downstream (behind)

𝛽⊥,𝑢 ≡ 𝛽𝑢𝛽⊥,𝑑 ≡ 𝛽𝑑

• assume conservation of particles/4-momentum across the shock 

→ conservation of fluxes across shock 𝜕𝜇𝑋
𝜇 =

1

𝑐
𝜕𝑡𝑋

0 − 𝜕𝑖𝑋
𝑖 = 0

→ no sources (
1

c
𝜕𝑡𝑋

0 = 0):    → 𝜕𝑖𝑋
𝑖 = 0

→integrate across infinitesimal small box 
lim
𝜖 → 0

𝜖/2−׬
𝜖/2

𝜕𝑖𝑋
𝑖 = 𝑋𝑢 − 𝑋𝑑 = 0

→𝑋upstream
𝑖 = 𝑋downstream

𝑖 ⇔ 𝑋𝑖 = 0
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Relativistic jumping conditions 

shock upstream (ahead)downstream (behind)

𝛽⊥,𝑢 ≡ 𝛽𝑢𝛽⊥,𝑑 ≡ 𝛽𝑑

𝑁𝜇 = 𝑛Γ, 𝑛𝛽Γ, 0 , 0

𝑇𝜇𝜈 =

𝑤Γ2 − 𝑝 𝑤Γ2𝛽 0 0

𝑤Γ2𝛽 β2Γ2𝑤 + 𝑝 0 0
0 0 𝑝 0
0 0 0 𝑝
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Relativistic jumping conditions 

shock upstream (ahead)downstream (behind)

𝛽⊥,𝑢 ≡ 𝛽𝑢𝛽⊥,𝑑 ≡ 𝛽𝑑

𝜕𝑡 𝜕𝑥
𝑛Γ𝛽 = 0𝑁𝜇 = 𝑛Γ, 𝑛𝛽Γ, 0 , 0

𝑇𝜇𝜈 =

𝑤Γ2 − 𝑝 𝑤Γ2𝛽 0 0

𝑤Γ2𝛽 β2Γ2𝑤 + 𝑝 0 0
0 0 𝑝 0
0 0 0 𝑝
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Relativistic jumping conditions 

shock upstream (ahead)downstream (behind)

𝛽⊥,𝑢 ≡ 𝛽𝑢𝛽⊥,𝑑 ≡ 𝛽𝑑

𝜕𝑡 𝜕𝑥
𝑛Γ𝛽 = 0

𝑤Γ2𝛽 = 0

𝛽2Γ2𝑤 + 𝑝 = 0

𝜕𝑡 𝜕𝑥

𝑁𝜇 = 𝑛Γ, 𝑛𝛽Γ, 0 , 0

𝑇𝜇𝜈 =

𝑤Γ2 − 𝑝 𝑤Γ2𝛽 0 0

𝑤Γ2𝛽 β2Γ2𝑤 + 𝑝 0 0
0 0 𝑝 0
0 0 0 𝑝
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Non-relativistic jumping conditions

mass

𝜌𝑑𝑣𝑑 = 𝜌𝑢𝑣𝑢

momentum

𝜌𝑑𝑣𝑑
2 + 𝑝𝑑 = 𝜌𝑢𝑣𝑢

2 + 𝑝𝑢

energy

𝑣𝑑
1

2
𝜌𝑑𝑣𝑑

2 +
ො𝛾

ො𝛾 − 1
𝑝𝑑 = 𝑣𝑢

1

2
𝜌𝑢𝑣𝑢

2 +
ො𝛾

ො𝛾 − 1
𝑝𝑢

number

𝑛𝑑𝛽𝑑 = 𝑛𝑢𝛽𝑢
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Transition of jumping conditions

mass

𝜌𝑣 = 0

momentum

𝜌𝑣2 + 𝑝 = 0

energy

𝑣
1

2
𝜌𝑣2 +

ො𝛾

ො𝛾 − 1
𝑝 = 0

number

𝑛𝛽 = 0
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Transition of jumping conditions

Γ

Γ2

Γ2

𝑛Γ𝛽 = 0

𝑤Γ2𝛽 = 0

𝛽2Γ2𝑤 + 𝑝 = 0

number density flux

enthalpy density flux

momentum density flux

mass

𝜌𝑣 = 0

momentum

𝜌𝑣2 + 𝑝 = 0

energy

𝑣
1

2
𝜌𝑣2 +

ො𝛾

ො𝛾 − 1
𝑝 = 0

number

𝑛𝛽 = 0
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Equation of state

• Jumping conditions = system of equations

→ relates 3 upstream variables to 3 downstream variables, e.g. {𝛽, 𝑛, 𝑤} or {𝛽, 𝑛 , 𝑝}

→ however equations contain further degree of freedom

→ need additional relation: equation of state

→ relates thermal pressure 𝑝th to internal energy 𝑒

• polytropic equation of state:   𝑝 = ො𝛾 − 1 𝑒 − 𝜌

→ 𝑒 =
𝑝

ෝ𝛾−1
+ 𝜌

→𝑤 = 𝑒 + 𝑝 =
ෝ𝛾

ෝ𝛾−1
𝑝 + 𝜌
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Deceleration of fluid at a strong shock

non-relativistic regime:

constant ratio of 𝛽𝑢 and 𝛽𝑑
→ constant deceleration 

efficiency

𝛽𝑢𝛽𝑑
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Deceleration of fluid at a strong shock

non-relativistic regime:

constant ratio of 𝛽𝑢 and 𝛽𝑑
→ constant deceleration 

efficiency

relativistic regime:

constant value of 𝛽𝑑
→ shock always decelerates 

downstream flow to 

non-relativistic speeds

𝛽𝑢𝛽𝑑

𝛽𝑑 → ො𝛾 − 1 =

2

3
for ො𝛾 = 5/3

1

3
for ො𝛾 = 4/3

𝛽𝑢 → 1
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Deceleration 𝛽𝑢𝛽𝑑

(strong)

non-rel.:  
𝛽𝑢

𝛽𝑑
≈

ෝ𝛾+1

ෝ𝛾−1



21

Deceleration

non-rel.:  
𝛽𝑢

𝛽𝑑
≈

ෝ𝛾+1

ෝ𝛾−1

𝛽𝑢𝛽𝑑

(strong)

relativistic:

𝛽𝑢

𝛽𝑑
≈

1

ෝ𝛾−1
= ቊ

3 for ො𝛾 = 4/3
1.5 for ො𝛾 = 5/3
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Deceleration

non-rel.:  
𝛽𝑢

𝛽𝑑
=

ෝ𝛾+1

ෝ𝛾−1+
2

ℳ2

=
ෝ𝛾+1

ෝ𝛾−1

1

1+
2ෝ𝛾

ෝ𝛾−1

𝜌𝑢
𝑝𝑢

𝛽𝑢
2

𝛽𝑢𝛽𝑑

ℳ ≫ 1 for all 𝛽𝑢Γ𝑢 > 10−3

ℳ ≈ 1 for 𝛽𝑢Γ𝑢 ≈ 𝛽𝑢 >
𝜌𝑢

𝑝𝑢

1/2(strong)

(weak)

relativistic:

𝛽𝑢

𝛽𝑑
≈

1

ෝ𝛾−1
= ቊ

3 for ො𝛾 = 4/3
1.5 for ො𝛾 = 5/3
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Number density - compression

strong: 4 and 7

𝑛𝑑

𝑛𝑢
=

𝛽𝑢

𝛽𝑑
=

ෝ𝛾−1+
2

ℳ2

ෝ𝛾+1

𝑛𝑢𝑛𝑑

non-relativistic regime:

constant ratio of 𝑛𝑢 and 𝑛𝑑
→ constant compression 

efficiency
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Number density - compression

strong: 4 and 7

𝑛𝑑

𝑛𝑢
=

𝛽𝑢

𝛽𝑑
=

ෝ𝛾−1+
2

ℳ2

ෝ𝛾+1

𝑛𝑑

𝑛𝑢
=

𝛽𝑢Γ𝑢

𝛽𝑑Γ𝑑
∝ Γ𝑢

𝑛𝑢𝑛𝑑

non-relativistic regime:

constant ratio of 𝑛𝑢 and 𝑛𝑑
→ constant compression 

efficiency

relativistic regime:

compression scales with Γ𝑢
→ arbitrary high 

compression

1

const

𝛽𝑑Γ𝑑 ≈
ො𝛾 − 1

ො𝛾 2 − ො𝛾
=
ො𝛾 − 1

ො𝛾

Γ𝑢
Γ𝑢𝑑

𝑛𝑑

𝑛𝑢
=

ෝ𝛾

ෝ𝛾−1
Γud BM76, KZ14
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thermal pressure

ram pressure

Efficiency of pressure conversion

𝛽2Γ2𝑤 + 𝑝 = 0

→ 𝑝 + 𝛽2Γ2
ො𝛾

ො𝛾 − 1
𝑝 + 𝛽2Γ2𝜌

consider ratio: 
outgoing thermal pressure

incoming ram pressure

→ heating efficiency

6/7

3/4

2/3

1/3

strong shock

𝜀𝑋 =
𝑝𝑋

𝑤u𝛽
2Γ2

𝜀th =
𝑝d

𝑤u𝛽
2Γ2
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thermal energy 

density flux

kinetic energy 

density flux

Efficiency of energy conversion

𝛽Γ2𝑤 = 0

→ 𝛽Γ2
ො𝛾

ො𝛾 − 1
𝑝 + 𝛽Γ(Γ − 1)𝜌 48

49

15

16

strong shock

𝑛Γ𝛽 = 0-

consider ratio: 
outgoing thermal energy density flux

incoming kinetic energy density flux

→ very close to 1

→ thermal energy density (strong):

𝑒𝑑 ∝ Γ𝑢 Γu − 1 𝜌𝑢 ∝ Γ𝑢
2𝜌𝑢

rel.
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Kinetic energy per particle (downstream rest frame)

strong shock 𝐸𝑘𝑖𝑛 =
𝑒𝑑
𝑛𝑑

−𝑚𝑐2

→
𝐸𝑘𝑖𝑛
𝑚𝑐2

=
1

ො𝛾 − 1

𝛽𝑑Γ𝑑
𝛽𝑢Γ𝑢

𝑝𝑑
𝑝𝑢

𝑝𝑢
𝜌𝑢

≈
2

ෝ𝛾
− 1 Γ𝑢 for Γ𝑢 ≫ 1

→ relativistic shocks produce 

relativistic (thermal) particles!

→ pair creation?

𝑒 =
𝑝

ෝ𝛾−1
+ 𝜌

Γud = 1 − 𝛽𝑢𝛽𝑑 Γ𝑢Γ𝑑 cf. Uhm12
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Where is this description too simple?

• In the derivation we assumed that these values are defined 

infinitesimally close to the shock (𝜖 → 0)

→ often assumed to hold within an entire homogeneous blast wave

• this simple 1D picture neglects any kind of turbulence

• feedback of non-thermal particles: We love to use shocks as sources 

of non-thermal particles (e.g. via diffusive shock acceleration)

→ the particles heat up the upstream medium (see e.g. Caprioli et al. 2020)

→ these shocks are collisionless, so we need to add magnetic fields to diffuse particles 



29

• all shocks convert incoming bulk kinetic energy into heating 

• downstream speed always transrelativistic (in the shock rest frame)

• density compression by Γu

• thermal energy density increase by factor Γ𝑢
2

Summary on relativistic shocks

𝑛Γ𝛽 = 0 𝑤Γ2𝛽 = 0𝛽2Γ2𝑤 + 𝑝 = 0
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Energy Momentum Tensor in Rest frame of fluid

→ 𝑇𝜇𝜈 =

𝑒 0 0 0
0 𝑝 0 0
0 0 𝑝 0
0 0 0 𝑝

𝑇𝜇𝜈 = 𝑤𝑢𝜇𝑢𝜈 + 𝑝th𝑔
𝜇𝜈
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Relativistic ram pressure & kinetic energy density

define better 𝒘𝜷𝟐𝚪𝟐


