Relativistic Shocks

Relativistic Jumping Conditions

Marc Klinger, Jonathan Morag Science Club 22.04.2021

Relativistic?

- Be careful:
- 1. relativistic shock = shock moving at relativistic speeds

 $\rightarrow (\beta\Gamma)_{\text{shock}} > 1$

- 2. relativistic equation of state: particles in the fluid move at relativistic speeds
 - $\rightarrow \langle \beta \Gamma \rangle_{\text{particle}} > 1$

Strong shocks

• as in the non-relativistic case a shock is said to be strong if:

Mach number
$$\mathcal{M} = \frac{\beta_u \Gamma_u}{\beta_{s,u} \Gamma_{s,u}} > 1$$

sound upstream
 \rightarrow then $\mathcal{M}^2 = \frac{\text{ram pressure}}{\text{thermal pressure}}$

- equivalent to cold upstream medium: $\beta_s^2 \sim \frac{p_u}{\rho_u} \ll 1$
- both depending only on upstream frame (initial condition)

Non-relativistic jumping conditions

$$\begin{array}{c} \mbox{mass} \\ \rho_d v_d = \rho_u v_u \end{array} \xrightarrow{\rho = m_p n} \mbox{number} \\ n_d \beta_d = n_u \beta_u \end{array}$$

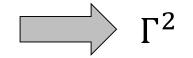
$$\begin{array}{l} \text{momentum} \\ \rho_d v_d^2 + p_d = \rho_u v_u^2 + p_u \end{array}$$

$$\begin{array}{l} \text{energy} \\ v_d \left[\frac{1}{2} \rho_d v_d^2 + \frac{\hat{\gamma}}{\hat{\gamma} - 1} p_d \right] = v_u \left[\frac{1}{2} \rho_u v_u^2 + \frac{\hat{\gamma}}{\hat{\gamma} - 1} p_u \right] \end{array}$$

Non-relativistic jumping conditions

$$\begin{array}{c|c} mass \\ \rho_d v_d = \rho_u v_u \end{array} \xrightarrow{\rho = m_p n} & number \\ n_d \beta_d = n_u \beta_u \end{array} \xrightarrow{\Gamma} \Gamma$$

$$\begin{array}{l} \text{momentum} \\ \rho_d v_d^2 + p_d = \rho_u v_u^2 + p_u \end{array}$$



Number conservation

- in rest frame: n
- define number flux 4 vector: $N^{\mu} = nu^{\mu} = n(\Gamma, \Gamma v^{i})$
- conservation of number of particles:

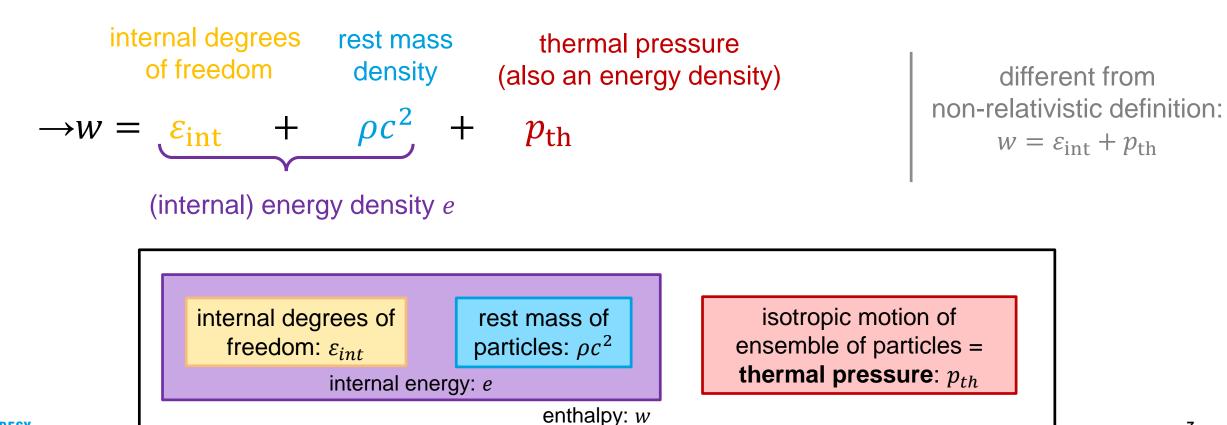
$$\partial_{\mu}N^{\mu}=0$$

$$\partial_{\mu}N^{\mu} = \frac{1}{c}\partial_{t}(n\Gamma) + \partial_{i}(n\Gamma\beta^{i}) = 0$$

• relativistic version of continuity equation ($\beta \ll 1$: $\partial_t n + \nabla(n\vec{v}) = 0$) (in rest frame no flux and $\partial_t n = 0$)

Energy, enthalpy,... - density

- in relativistic physics new concept of rest mass
- sum up all internal/isotropic "energy reservoirs" of a fluid: enthalpy

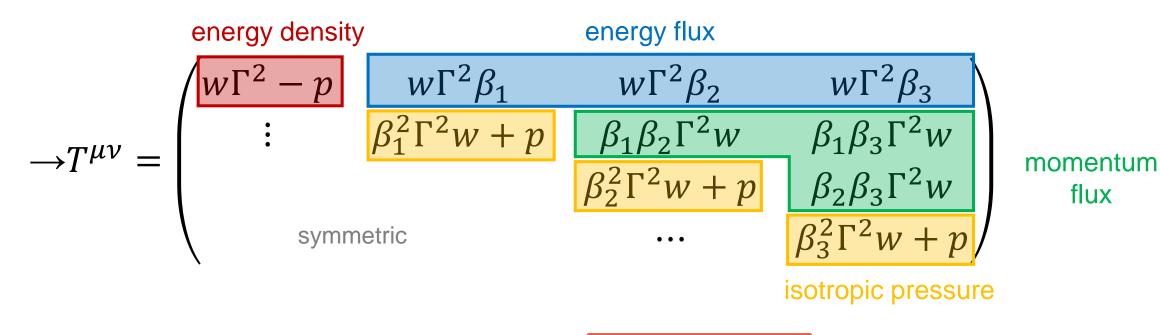


Conservation of energy and momentum

energy and momentum are a combined concept in relativity

ightarrow energy momentum tensor $T^{\mu
u}=wu^{\mu}u^{
u}+p_{
m th}g^{\mu
u}$

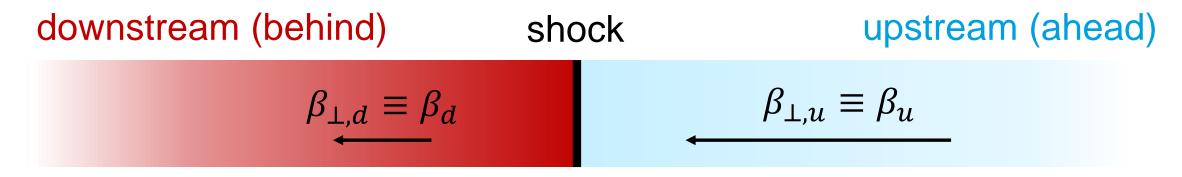
perfect fluid: no viscosity/heat conduction



4 equations (1 energy + 3 mom.):

$$\partial_{\mu}T^{\mu\nu} = 0$$

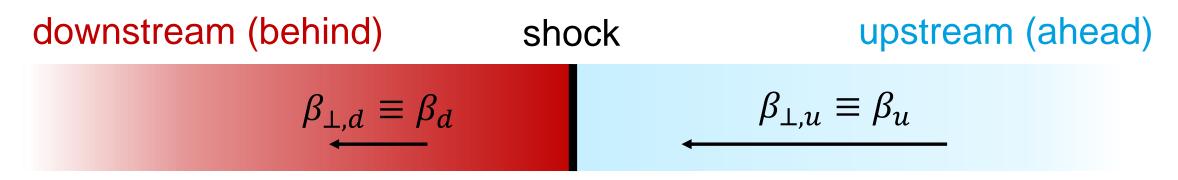
Shock rest frame and 1D



 $N^{\mu} = (n\Gamma, n\beta\Gamma, 0, 0)$

$$T^{\mu\nu} = \begin{pmatrix} w\Gamma^2 - p & w\Gamma^2\beta & 0 & 0 \\ w\Gamma^2\beta & \beta^2\Gamma^2w + p & 0 & 0 \\ 0 & 0 & p & 0 \\ 0 & 0 & 0 & p \end{pmatrix}$$

Conservation across shock



assume conservation of particles/4-momentum across the shock

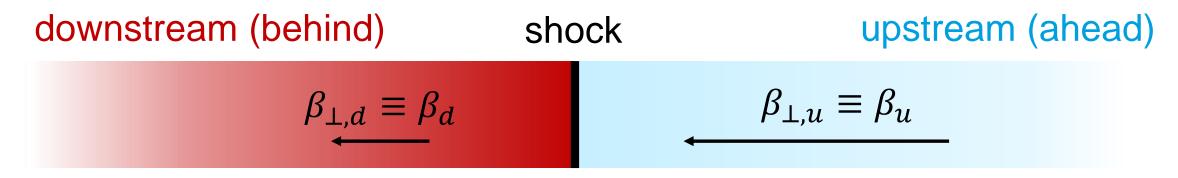
$$\rightarrow$$
 conservation of fluxes across shock $\partial_{\mu}X^{\mu} = \frac{1}{c}\partial_{t}X^{0} - \partial_{i}X^{i} = 0$

$$\rightarrow$$
 no sources $\left(\frac{1}{c}\partial_t X^0 = 0\right)$: $\rightarrow \partial_i X^i = 0$

 \rightarrow integrate across infinitesimal small box $\lim_{\epsilon \to 0} \int_{-\epsilon/2}^{\epsilon/2} \partial_i X^i = X_u - X_d = 0$

$$\rightarrow X_{\text{upstream}}^{i} = X_{\text{downstream}}^{i} \iff \llbracket X^{i} \rrbracket = 0$$

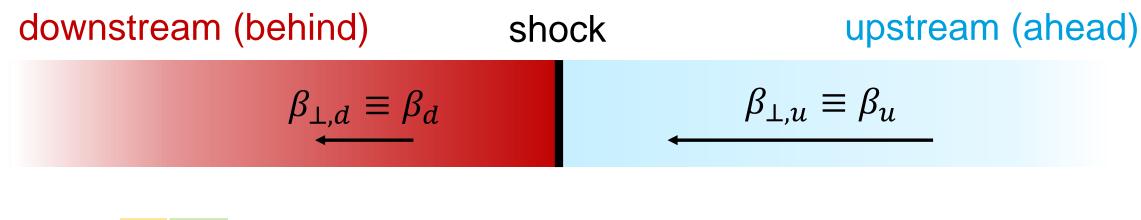
Relativistic jumping conditions



 $N^{\mu} = (n\Gamma, n\beta\Gamma, 0, 0)$

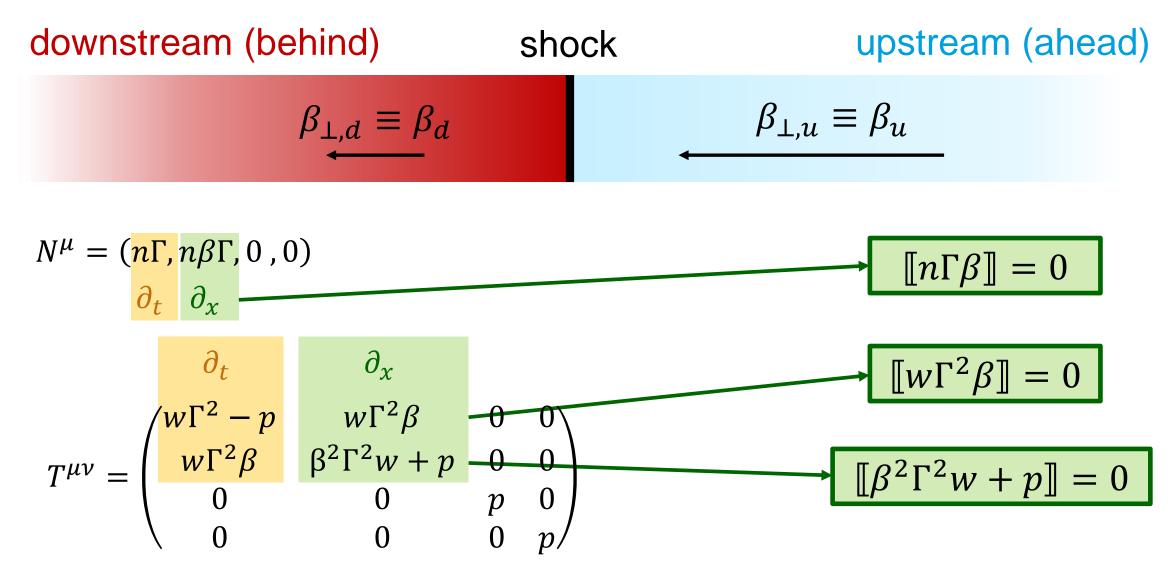
$$T^{\mu\nu} = \begin{pmatrix} w\Gamma^2 - p & w\Gamma^2\beta & 0 & 0 \\ w\Gamma^2\beta & \beta^2\Gamma^2w + p & 0 & 0 \\ 0 & 0 & p & 0 \\ 0 & 0 & 0 & p \end{pmatrix}$$

Relativistic jumping conditions



$$T^{\mu\nu} = \begin{pmatrix} w\Gamma^2 - p & w\Gamma^2\beta & 0 & 0 \\ w\Gamma^2\beta & \beta^2\Gamma^2w + p & 0 & 0 \\ 0 & 0 & p & 0 \\ 0 & 0 & 0 & p \end{pmatrix}$$

Relativistic jumping conditions



Non-relativistic jumping conditions

$$\begin{array}{c} \text{mass} \\ \rho_d v_d = \rho_u v_u \end{array} \qquad \begin{array}{c} \text{number} \\ n_d \beta_d = n_u \beta_u \end{array}$$

$$\begin{array}{l} \text{momentum} \\ \rho_d v_d^2 + p_d = \rho_u v_u^2 + p_u \end{array}$$

energy
$$v_d \left[\frac{1}{2} \rho_d v_d^2 + \frac{\hat{\gamma}}{\hat{\gamma} - 1} p_d \right] = v_u \left[\frac{1}{2} \rho_u v_u^2 + \frac{\hat{\gamma}}{\hat{\gamma} - 1} p_u \right]$$

Transition of jumping conditions

$$\frac{\text{momentum}}{\llbracket \rho v^2 + p \rrbracket = 0}$$

$$\frac{\text{energy}}{\left[v \left(\frac{1}{2} \rho v^2 + \frac{\hat{\gamma}}{\hat{\gamma} - 1} p \right) \right]} = 0$$

Transition of jumping conditions

Π

Equation of state

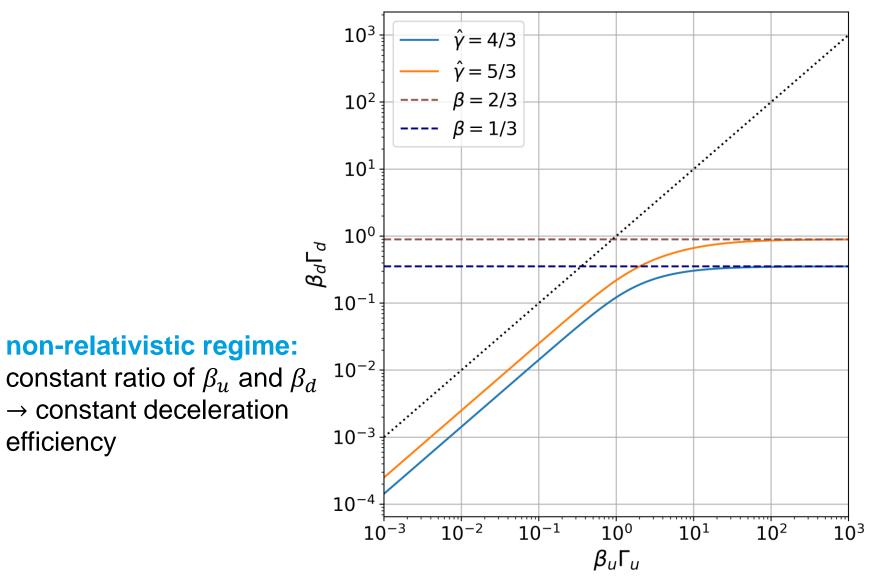
- Jumping conditions = system of equations
 - \rightarrow relates 3 upstream variables to 3 downstream variables, e.g. { β , n, w} or { β , n, p}
 - \rightarrow however equations contain further degree of freedom
 - \rightarrow need additional relation: equation of state
 - \rightarrow relates thermal pressure $p_{\rm th}$ to internal energy e

polytropic equation of state:

$$p=(\hat{\gamma}-1)(e-\rho)$$

$$\rightarrow e = \frac{p}{\hat{\gamma} - 1} + \rho$$
$$\rightarrow w = e + p = \frac{\hat{\gamma}}{\hat{\gamma} - 1}p + \rho$$

Deceleration of fluid at a strong shock



 β_d

 β_u

 $\beta_u \Gamma_u$

10³ $\hat{i} = 4/3$ $\hat{y} = 5/3$ $\beta = 2/3$ 10^{2} $\beta = 1/3$ 10¹ **10**⁰ $\beta_d \Gamma_d$ $\beta_d \rightarrow$ 10^{-1} non-relativistic regime: 10⁻² constant ratio of β_{μ} and β_{d} \rightarrow constant deceleration 10-3 efficiency 10^{-4} 10^{-2} 10^{-1} 10¹ 10⁰ 10² 10^{-3} 10³

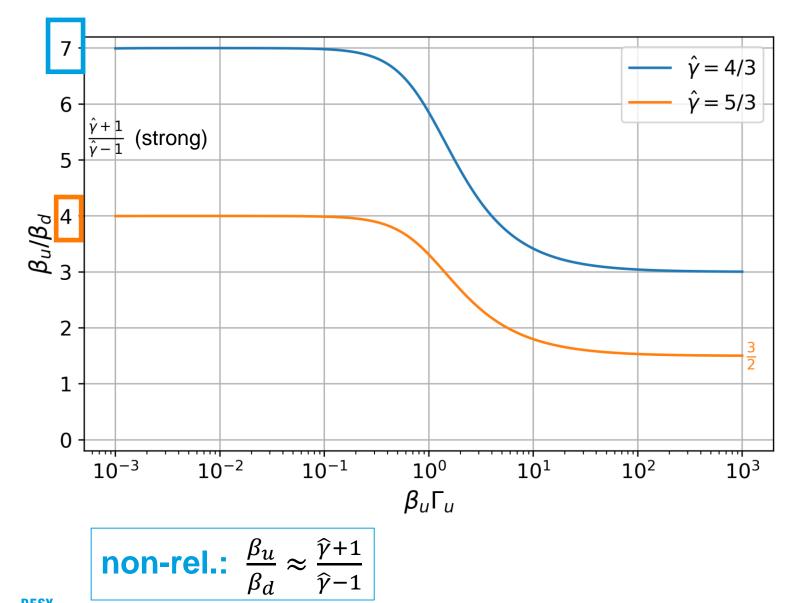
$$\hat{\gamma} - 1 = \begin{cases} \frac{2}{3} & \text{for } \hat{\gamma} = 5/3 \\ \frac{1}{3} & \text{for } \hat{\gamma} = 4/3 \end{cases}$$

 β_u

relativistic regime:

constant value of β_d \rightarrow shock always decelerates downstream flow to non-relativistic speeds

Deceleration

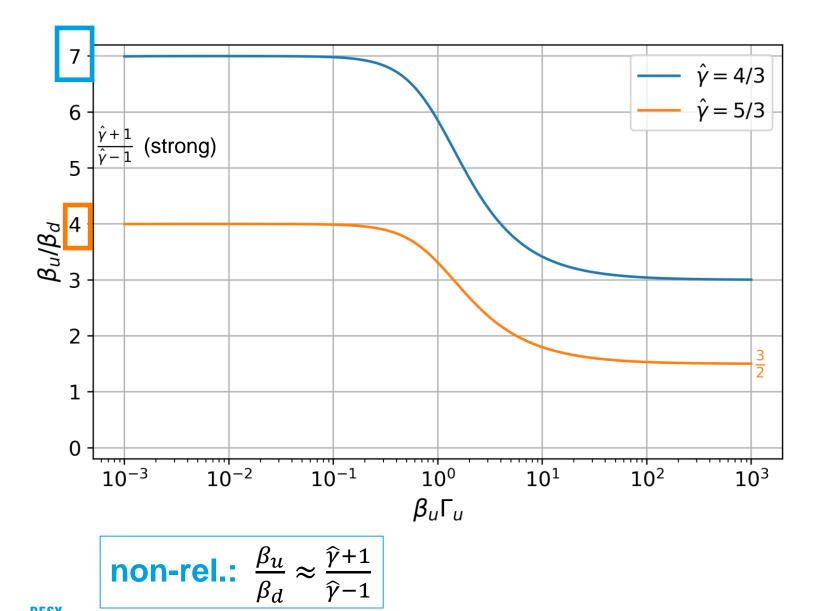


DESY.

 β_u

 β_d

Deceleration



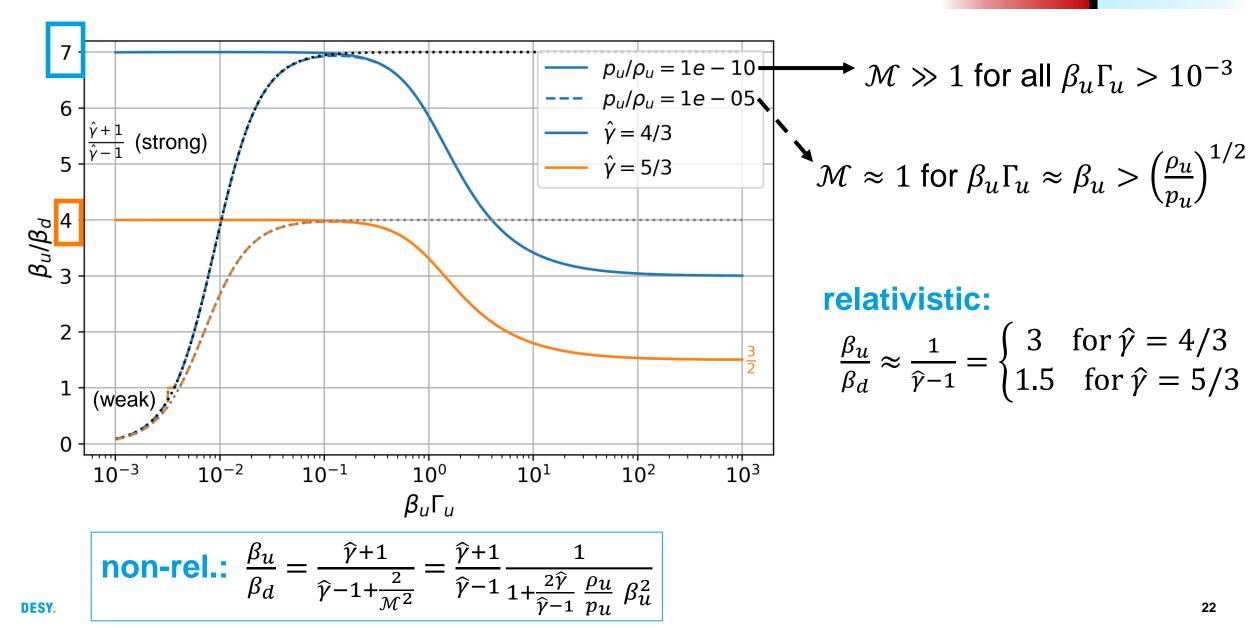
relativistic:

$$\frac{\beta_u}{\beta_d} \approx \frac{1}{\hat{\gamma} - 1} = \begin{cases} 3 & \text{for } \hat{\gamma} = 4/3 \\ 1.5 & \text{for } \hat{\gamma} = 5/3 \end{cases}$$

 β_d

 β_u

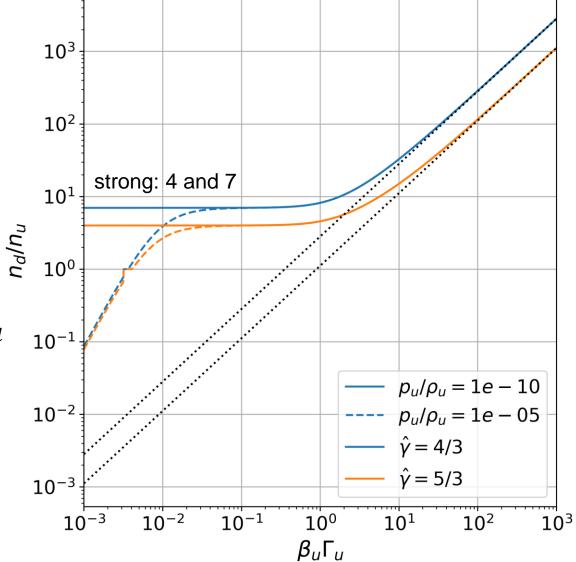
Deceleration



 β_u

 β_d

Number density - compression



non-relativistic regime:

constant ratio of n_u and n_d \rightarrow constant compression efficiency

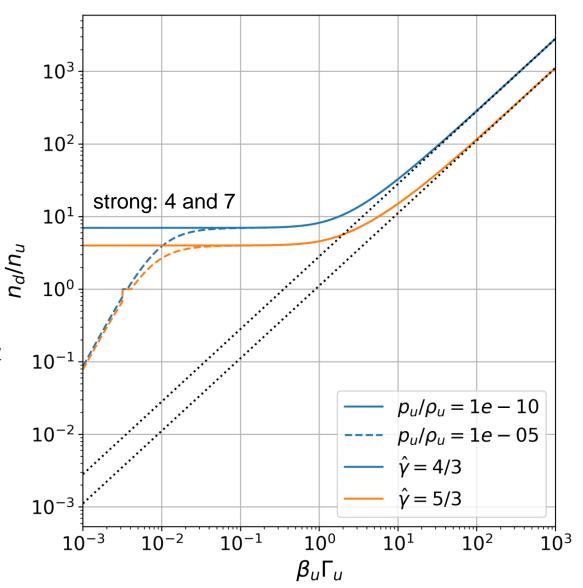
$$\frac{n_d}{n_u} = \frac{\beta_u}{\beta_d} = \frac{\widehat{\gamma} - 1 + \frac{2}{\mathcal{M}^2}}{\widehat{\gamma} + 1}$$

Number density - compression

non-relativistic regime:

constant ratio of n_u and n_d \rightarrow constant compression efficiency

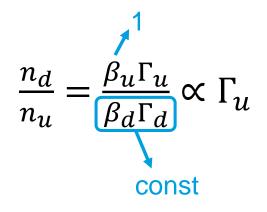
$$\frac{n_d}{n_u} = \frac{\beta_u}{\beta_d} = \frac{\widehat{\gamma} - 1 + \frac{2}{\mathcal{M}^2}}{\widehat{\gamma} + 1}$$



relativistic regime: compression scales with Γ_u \rightarrow arbitrary high compression

 n_u

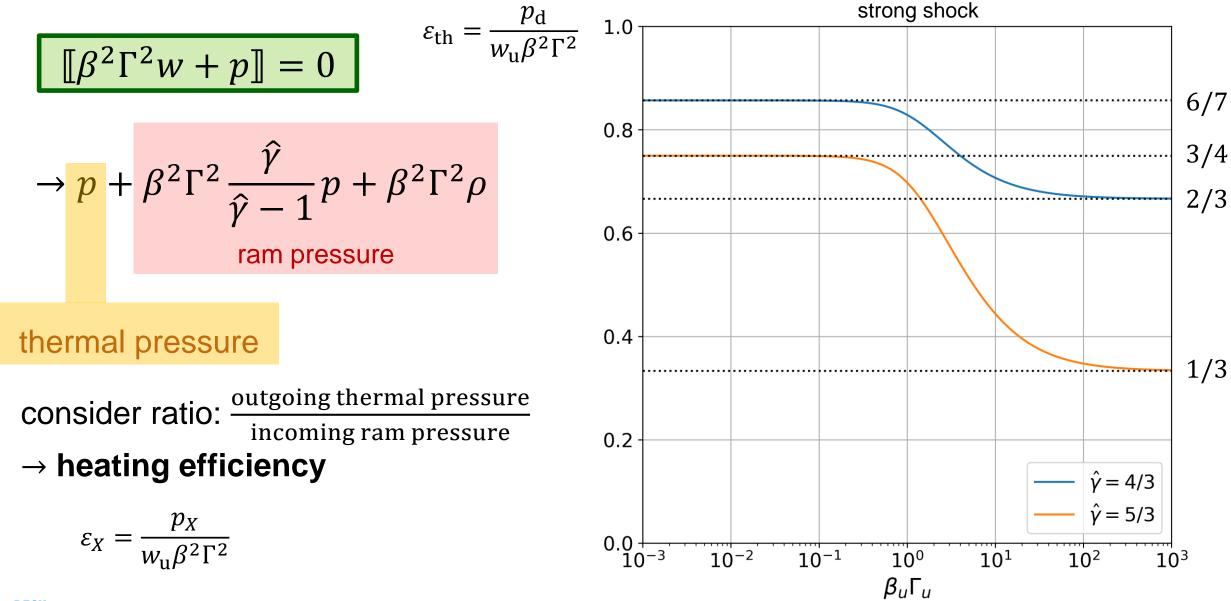
 n_d



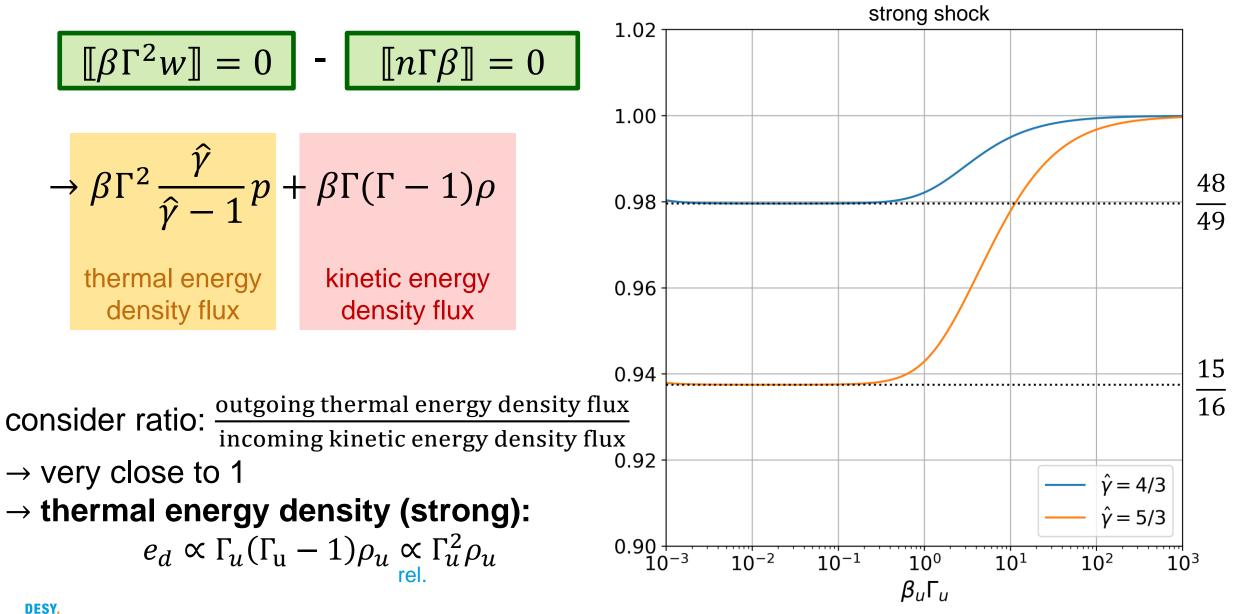
 $\beta_{d}\Gamma_{d} \approx \frac{\hat{\gamma} - 1}{\sqrt{\hat{\gamma}(2 - \hat{\gamma})}} = \frac{\hat{\gamma} - 1}{\hat{\gamma}} \frac{\Gamma_{u}}{\Gamma_{ud}}$

 $\frac{n_d}{n_u} = \frac{\widehat{\gamma}}{\widehat{\gamma} - 1} \Gamma_{\rm ud} \text{ BM76, KZ14}$

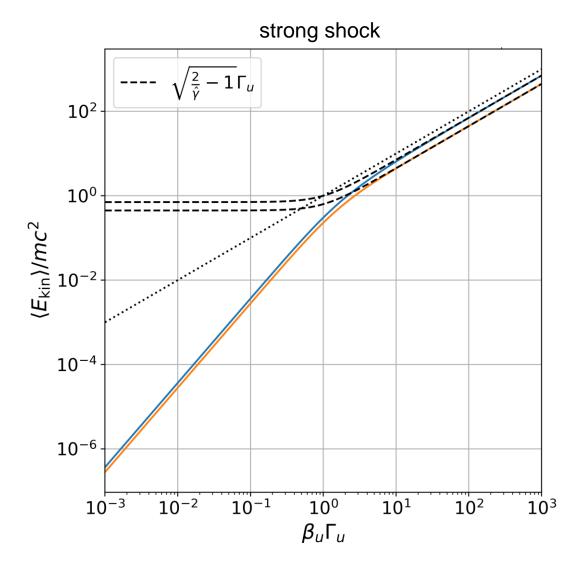
Efficiency of pressure conversion



Efficiency of energy conversion



Kinetic energy per particle (downstream rest frame)



$$\langle E_{kin} \rangle = \frac{e_d}{n_d} - mc^2$$

$$\rightarrow \frac{\langle E_{kin} \rangle}{mc^2} = \frac{1}{\hat{\gamma} - 1} \frac{\beta_d \Gamma_d}{\beta_u \Gamma_u} \frac{p_d}{p_u} \frac{p_u}{\rho_u}$$

$$\approx \sqrt{\frac{2}{\widehat{\gamma}} - 1} \Gamma_u$$
 for $\Gamma_u \gg 1$

 $\Gamma_{\rm ud} = (1 - \beta_u \beta_d) \Gamma_u \Gamma_d$

cf. Uhm12

 $e = \frac{\rho}{\widehat{v} - 1} + \rho$

→ relativistic shocks produce
 relativistic (thermal) particles!
 → pair creation?

Where is this description too simple?

- In the derivation we assumed that these values are defined infinitesimally close to the shock ($\epsilon \rightarrow 0$)
 - \rightarrow often assumed to hold within an entire homogeneous blast wave
- this simple 1D picture neglects any kind of turbulence
- feedback of non-thermal particles: We love to use shocks as sources of non-thermal particles (e.g. via diffusive shock acceleration)
 - \rightarrow the particles heat up the upstream medium (see e.g. Caprioli et al. 2020)
 - \rightarrow these shocks are collisionless, so we need to add magnetic fields to diffuse particles

Summary on relativistic shocks

$$[\![\beta^2\Gamma^2w + p]\!] = 0$$

$$[\![w\Gamma^2\beta]\!] = 0$$

- all shocks convert incoming bulk kinetic energy into heating
- downstream speed always transrelativistic (in the shock rest frame)
- density compression by Γ_u

 $\llbracket n\Gamma\beta \rrbracket = 0$

• thermal energy density increase by factor Γ_u^2

References

- A. Taub 1948, Relativistic Rankine-Hugoniot Equations
- L. Landau & E. Lifshitz 1987, Fluid Mechanics
- B. Schutz 2009, A First Course in General Relativity, Second Edition
- L. Rezolla & O. Zanotti 2013, Relativistic Hydrodynamics
- Many thanks to Andrew Taylor, Vasu Shaw, Pavlo Plotko for enlightening discussions!

Energy Momentum Tensor in Rest frame of fluid

$$T^{\mu\nu} = w u^{\mu} u^{\nu} + p_{\rm th} g^{\mu\nu}$$

$$\rightarrow T^{\mu\nu} = \begin{pmatrix} e & 0 & 0 & 0 \\ 0 & p & 0 & 0 \\ 0 & 0 & p & 0 \\ 0 & 0 & 0 & p \end{pmatrix}$$

Relativistic ram pressure & kinetic energy density

