

Weizsäcker-Williams approach

Marc Klinger

MMS Science Club 26.01.2023

HELMHOLTZ

What is it all about?

- radiation of a point charge moving at relativistic non-const. speed
 - \rightarrow radiation often produced by moving charges, e.g.
 - synchrotron
 - bremsstrahlung
 - Cherenkov radiation
 - \rightarrow derivation of spectral distribution often quite mathematically complex
 - \rightarrow not very intuitive results ($\int dlnx K_{\underline{5}}(x)$)
 - \rightarrow tend to skip derivations, use end results, loose track of assumptions and approximations made
- Weizsäcker-Williams method as simple approximation based geometrical considerations with intuitive picture

Weizsäcker-Williams Approach

- charged particles at relativistic speeds carry a "pancake" field around them (in obs. frame)
 - \rightarrow can be seen as a cloud of virtual photons

- if particle gets deviated from it's trajectory ($\vec{v} \neq 0$), virtual photons are shaken off after a formation time
- simple intuition that works for many radiation processes
- geometry/trajectory defines radiated spectrum
 - \rightarrow WW approach gives good approximations without heavy mathematical machinery

Weizsäcker, C. F. v. Ausstrahlung bei Stößen sehr schneller Elektronen. *Zeitschrift für Physik* **88**, 612–625 (1934). Williams, E. J. CORRELATION OF CERTAIN COLLISION PROBLEMS WITH RADIATION THEORY. Kgl. Danske Videnskab. Selskab Mat.-fys. Medd. 13, No. 4 (1935)

Zolotorev, M. S. & McDonald, K. T. Classical Radiation Processes in the Weizsacker-Williams Approximation. (2000). DESY. M. Klinger | Science Club | 26.01.23

Idea of virtual photon cloud

Potentials
 Fields
 Energy spectrum

Green's function of a 4D-point charge

• Maxwell's equations in vacuum (Lorenz Gauge)

 $\rightarrow \Box \phi(\vec{x},t) = \rho(\vec{x},t)$ and $\Box \vec{A}(\vec{x},t) = \vec{j}(\vec{x},t)$ with $\Box = \frac{1}{c^2} \partial_t^2 - \Delta$

 \rightarrow Green's function = solution for point charge in space and time

$$\rightarrow G_{\pm}(\vec{x} - \vec{x}', t' - t) = \Theta(\mp(t' - t)) \frac{1}{|\vec{x} - \vec{x}'|} \delta\left((t' - t) \pm \frac{|\vec{x}' - \vec{x}|}{c}\right)$$

limit in time point charge

imit in time point charge
 retarded from fixes speed
 +: advanced electrostatics to speed of
 ⇒ radial EM

fixes speed of information to speed of light → radial EM wave

 \rightarrow solution for any charge/current distribution:

$$\to \phi_{\pm}(\vec{x},t) = \int dt' dV' \ G_{\pm}(\vec{x}' - \vec{x},t' - t) \ \rho(\vec{x}',t') = \int dV' \frac{1}{|\vec{x} - \vec{x}'|} \rho\left(\vec{x}',t + \frac{|\vec{x}' - \vec{x}|}{c}\right)$$

same for vector potential \vec{A} with current distribution \vec{j}

Green's function propagates charge distribution in time/space

X

5

Potentials visually

Electromagnetic fields of a point charge

• Fields correspond to gradients of potentials (mix both, ϕ and \vec{A})

 $\rightarrow \vec{E} = -\vec{\nabla}\phi - \partial_t \vec{A}$ and $\vec{B} = \vec{\nabla} \times \vec{A}$

• for point charge with trajectory $\vec{R}(t)$ and $\vec{\beta}(t) = \partial_t \vec{R}(t)/c$:

 $\rightarrow \rho(\vec{x},t) = q \,\delta^3\left(\vec{x} - \vec{R}(t)\right) \text{ and } \vec{j}(\vec{x},t) = q\vec{\beta}c\delta^3\left(\vec{x} - \vec{R}(t)\right)$

see e.g. Jackson, Classical Electrodynamics

7

Visual fields: Field lines for relativistic point charge

• Field lines = tangential to electric field vector

field lines are amplified perpendicular to direction of motion \rightarrow field becomes basically transverse

python module from Matthew Filipovic: <u>https://github.com/MatthewFilipovich/moving-point-charges</u> see also Filipovich, M. J. & Hughes, S. *American Journal of Physics* **89**, 482–489 (2021).

What does an observer see?

• field at distance basically an EM wave traveling with photon

What does an observer see?

• field at distance basically an EM wave traveling with photon

What does an observer see?

• field at distance basically an EM wave traveling with photon

mangetic field: $\vec{B} = \vec{n} \times \vec{E}$

alternatively: boost Coulomb field to observer frame

$$E_{x}(t) = \frac{q}{b^{2}} \frac{\beta \gamma ct}{b} \left(1 + \left(\frac{\gamma ct}{b}\right)^{2} \right)^{-3/2}$$
$$E_{y}(t) = \frac{q\gamma}{b^{2}} \left(1 + \left(\frac{\gamma ct}{b}\right)^{2} \right)^{-3/2}$$

Pulse Properties

- at their max. values
 - $\rightarrow E_{\chi} \sim \frac{q}{b^2} \rightarrow \text{negligible}$ $\rightarrow E_{\chi} \sim \frac{q\gamma}{b^2} \rightarrow \text{plane wave}$
- pulse significant for $\Delta t \approx \frac{b}{\gamma c}$

$$\rightarrow$$
 dominant frequency $\nu \sim \frac{1}{\Delta t} = \frac{\gamma c}{b}$

• energy
$$U \sim E^2 V \sim \frac{e^2 \gamma^2}{b^4} b^2 \frac{b}{\gamma} \sim \frac{e^2 \gamma}{b}$$

for peaky energy spectrum

$$\rightarrow \frac{EdN}{dE} = \frac{dN}{dlnE} \sim \frac{U}{h\nu} \sim \frac{e^2}{\hbar c} = \alpha$$

 \rightarrow constant amount $\sim \alpha$ of photons per log. energy bin!

$$E_{\chi}(t) = \frac{q}{b^2} \frac{\beta \gamma ct}{b} \left(1 + \left(\frac{\gamma ct}{b}\right)^2 \right)^{-3/2}$$
$$E_{\chi}(t) = \frac{q\gamma}{b^2} \left(1 + \left(\frac{\gamma ct}{b}\right)^2 \right)^{-3/2}$$

 $\Delta t \approx b/(\gamma c)$

Spectrum of the virtual photon cloud

Fermi, E. Über die Theorie des Stoßes zwischen Atomen und elektrisch geladenen Teilchen. Zeitschrift für Physik 29, 315–327 (1924).

• Fourier transform and integrate for all distances (b) above b_{min}

$$\rightarrow \frac{1}{\alpha} \frac{\mathrm{d}N}{\mathrm{d}\ln E} = \frac{2}{\pi\beta^2} \left[x K_0(x) K_1(x) - \frac{x^2}{2} \left(K_1^2(x) - K_0^2(x) \right) \right] \quad \text{with } x = \frac{Eb_{min}}{\beta\gamma\hbar c}$$
$$\rightarrow \frac{1}{\alpha} \frac{\mathrm{d}N}{\mathrm{d}\ln E} \approx \theta \left(E \le \frac{\gamma c\hbar}{b_{min}} \right) \quad \text{for } \beta \approx 1 \quad \text{(neglecting logarithmic term)}$$

cf. Rybicki & Lightman eq. 4.74b

absolute minimum on *b* from Compton wavelength of particle (max energy $E_{max} \leq \frac{\gamma c\hbar}{b_{min}} \sim \gamma mc^2$)

> \rightarrow idea of WW: these virtual photons are ready to be liberated

Formation time or how to free the virtual photons

How to free photons?

"The formation length (time) is the distance (time) the electron travels while a radiated wave advances one wavelength ahead of the projection of the electron's motion onto the direction of observation."

Zolotorev, M. S. & McDonald, K. T. Classical Radiation Processes in the Weizsacker-Williams Approximation. (2000).

Where does this come from?

Schwinger, J. On the Classical Radiation of Accelerated Electrons. *Phys. Rev.* 75, 1912–1925 (1949)

- radiation = charge works against its own old (retarded) fields
- can calculate the power: $\frac{dE}{dt}(t) = -\int dV \vec{j}(\vec{x},t) \cdot \vec{E}_{ret}(\vec{x},t)$
- consider only radiated part, point charge, Fourier transform

DESY. M. Klinger | Science Club | 26.01.23

Where does this come from?

Schwinger, J. On the Classical Radiation of Accelerated Electrons. *Phys. Rev.* 75, 1912–1925 (1949)

- radiation = charge works against its own old (retarded) fields
- can calculate the power: $\frac{dE}{dt}(t) = -\int dV \vec{j}(\vec{x},t) \cdot \vec{E}_{ret}(\vec{x},t)$
- consider only radiated part, point charge, Fourier transform

17

WW summary

• Radiation spectrum:

$$\frac{\mathrm{d}N}{\mathrm{d}\ln E \,\mathrm{d}t} \approx \frac{\alpha}{t_F(E)} e^{-\frac{E}{E_c}} \theta(t \ge t_F(E))$$

- need to work out:
 - $\rightarrow E_c$ critical energy from e.g. b_{min}
 - $\rightarrow t_F$ formation time from geometry of trajectory
- radiation beamed into $1/\gamma$ cone for rel. particle
 - \rightarrow only very small part of curved trajectory matters

Examples 1) Synchrotron 2) Cherenkov

1) Synchrotron in the WW approach

- pulse duration for small angle interval: $\Delta t_{obs} \sim \mathfrak{D} \frac{R_L}{c} \Delta \theta \sim \frac{1}{v^2} \frac{R_L}{c} \frac{1}{v}$
 - Doppler factor $\mathfrak{D} = 1 \vec{\beta} \cdot \vec{n} \approx \frac{1}{\gamma^2}$, Larmor radius $R_L = \frac{\beta \gamma m_e c^2}{eB}$, angular width $\Delta \theta \sim \frac{1}{\gamma}$
- critical energy: $E_{max} \sim \gamma^3 \frac{\hbar c}{R_L} = \gamma^2 \frac{B}{B_c} m_e c^2$

• formation time:
$$\lambda = ct_F - \Delta_{chord} \approx ct_F \left[\frac{1}{2\gamma^2} + \frac{1}{24} \left(\frac{ct_F}{R_L}\right)^2\right]$$

 \rightarrow negligible curvature effects: $\frac{1}{\gamma^2} \gg \left(\frac{L_F}{r}\right)^2 = \theta_F^2 \rightarrow$ first term dominates, no radiation

 \rightarrow dominant curvature effects: $\frac{1}{\gamma^2} \ll \theta_F^2 \rightarrow$ second term dominates, $t_F \approx \frac{(24R_L^2\lambda)^{\frac{1}{3}}}{c} \sim h^{\frac{1}{3}} \left(\frac{R_L}{c}\right)^{\frac{2}{3}} E^{-\frac{1}{3}}$

•
$$\frac{\mathrm{d}N}{\mathrm{d}\ln E \, dt} \approx \frac{\alpha}{t_F(E)} e^{-\frac{E}{Emax}} \propto E^{\frac{1}{3}} e^{-\frac{E}{Emax}}$$

Field lines for constant motion

Field lines for curved trajectory

 $\beta \Gamma_{max} = 2.5, t = 0.19s$

- Intuition for field lines ullet
 - \rightarrow radially (relativistically compressed) blown out at c along particles history
 - \rightarrow curvature creates radially outwards compressed field lines

Visual fields: Field lines for circle

2) Cherenkov radiation

- particle faster than speed of light in medium
 - \rightarrow outruns virtual photons
 - \rightarrow characteristic angle $\cos \theta_C = \frac{1}{\beta n}$

•
$$\lambda = \beta c t_F - \frac{c}{n} t_F \cos \theta_C = \beta c t_F \sin^2 \theta_C$$

 $\rightarrow t_F = \frac{\lambda}{\beta c \sin^2 \theta_C} \approx \frac{h}{\sin^2 \theta_C E}$
 $\rightarrow \frac{dN}{d\ln E dt} \approx \frac{\alpha}{t_F(E)} = \frac{\alpha}{h} \sin^2 \theta_C E$
• Franck-Tamm: $\frac{dE}{d\omega dx} = \frac{\hbar dN}{d\ln E c dt} \approx \frac{\hbar \alpha}{c t_F(E)} = \frac{e^2}{2\pi c^2} \omega \left(1 - \left(\frac{1}{\beta n}\right)^2\right)$

DESY. M. Klinger | Science Club | 26.01.23

WW summary

• Radiation spectrum:

$$\frac{\mathrm{d}N}{\mathrm{d}\ln E \,\mathrm{d}t} \approx \frac{\alpha}{t_F(E)} e^{-\frac{E}{E_c}} \theta(t \ge t_F(E))$$

- need to work out:
 - $\rightarrow E_c$ critical energy from e.g. b_{min}
 - $\rightarrow t_F$ formation time from geometry of trajectory
- radiation beamed into $1/\gamma$ cone for rel. particle
 - \rightarrow only very small part of curved trajectory matters

Bibliography

- Weizsäcker, C. F. v. Ausstrahlung bei Stößen sehr schneller Elektronen. Zeitschrift für Physik 88, 612–625 (1934).
- Williams, E. J. CORRELATION OF CERTAIN COLLISION PROBLEMS WITH RADIATION THEORY. Kgl. Danske Videnskab. Selskab Mat.-fys. Medd. 13, No. 4 (1935)
- Zolotorev, M. S. & McDonald, K. T. Classical Radiation Processes in the Weizsacker-Williams Approximation. (2000).
- Schwinger, J. On the Classical Radiation of Accelerated Electrons. *Phys. Rev.* **75**, 1912–1925 (1949)
- Filipovich, M. J. & Hughes, S. Space-time computation and visualization of the electromagnetic fields and potentials generated by moving point charges. *American Journal of Physics* **89**, 482–489 (2021).
- Fermi, E. Über die Theorie des Stoßes zwischen Atomen und elektrisch geladenen Teilchen. Zeitschrift für Physik 29, 315– 327 (1924).
- Rybicki, G. B. & Lightman, A. P. Radiative Processes in Astrophysics. (Wiley, 2004).

Syn: Formation length

•
$$\lambda = ct_F - \overline{OP}$$
 and $L_F = r\theta_F$
 $\rightarrow \overline{OP} = \overline{OT} r \cos \frac{\theta_F}{2} = 2r \cos \frac{\theta_F}{2} \sin \frac{\theta_F}{2} = r \sin \theta_F$
• $\lambda = L_F \left(\frac{1}{\beta} - \frac{\sin \theta_F}{\theta_F}\right)$
• with $\frac{\sin \theta_F}{\theta_F} \approx 1 - \frac{\theta_F^2}{6}$ and $\frac{1}{\beta} \approx 1 + \frac{1}{2\gamma^2}$

•
$$\lambda = \frac{L_F}{2\gamma^2} + \frac{L_F^3}{6r^2} + \cdots$$

• two regimes:

 \rightarrow negligible curvature effects $\frac{1}{\gamma^2} \gg \left(\frac{L_F}{r}\right)^2 = \theta_F^2$: first term dominates

 \rightarrow dominant curvature effects $\gamma^{-2} \ll \theta_F^2$: second term dominates DESY. M. Klinger | Science Club | 26.01.23

wavefront

CtF

 \overline{OP}

 θ_F

 γ

 \boldsymbol{p}

 L_F

 \overline{OT}