

# **VHE GRB Afterglows: A story about Bactrians, Dromedaries and lots of Butterflies**

Marc Klinger (marc.klinger@desy.de), Andrew Taylor, Walter Winter, Donggeun Tak, Sylvia Zhu

10.01.2023

**Transient Tuesday** 

HELMHOLTZ WEIZMANN RESEARCH SCHOOL MULTIMESSENGER ASTR



RONOMY

HELMHOLTZ





# Are gamma-ray bursts...



Or

# **D**romedaries





# **GRBs from two sides**

#### **OBSERVATIONAL** picture

- we observe flashes of X/γ-rays isotropically distributed on sky
- we find a complex prompt phase and smooth afterglow in the light curve

s-1

lux (erg cm<sup>-2</sup>

- we have associated one short burst to a NS-NS-merger and many long ones to SN
- short events  $\rightarrow$  hard to follow up



# **GRBs from two sides**

#### **OBSERVATIONAL** picture

- we observe flashes of X/γ-rays isotropically distributed on sky
- we find a complex prompt phase and smooth afterglow in the light curve
- we have associated one short burst to a NS-NS-merger and many long ones to SN
- short events  $\rightarrow$  hard to follow up

#### **THEORETICAL** picture

- accelerate a shell of hot plasma (jet) and dump it into a circum-burst medium
- different mechanisms convert the kinetic energy eventually into photons that we can observe at Earth (and other messengers?)

→ Fireball model

#### **Instrument recap**





#### **Instrument recap**



DESY. | Transient Tuesday | M.Klinger, 10.01.23

#### **Instrument recap**



DESY. | Transient Tuesday | M.Klinger, 10.01.23



DESY. | Transient Tuesday | M.Klinger, 10.01.23

# The afterglow picture before the VHE data

• spectral indices around  $dN/dE_{\gamma} \sim E_{\gamma}^{-2}$ 





Ajello et al. 2018, joint Swift/Fermi analysis **DESY.** | Transient Tuesday | M.Klinger, 10.01.23

## The afterglow picture before the VHE data

- spectral indices around  $dN/dE_{\gamma} \sim E_{\gamma}^{-2}$
- highest energy detections up to 100 GeV (Fermi-LAT)



## The afterglow picture before the VHE data

- spectral indices around  $dN/dE_{\gamma} \sim E_{\gamma}^{-2}$
- highest energy detections up to 100 GeV (Fermi-LAT)
- no evidence for new component

 $\rightarrow$  not even GRB 130427A (Kouveliotou et al. 2013)

# → no second component for GRBs or only half the story?



# **VHE GRB Afterglows?**

- $180720B \rightarrow$  no contemporaneous data at other energies
- 190114C  $\rightarrow$  focus of my talk
- 190829A  $\rightarrow$  near by, strikingly flat VHE spectrum
- 201015A  $\rightarrow$  3.5 $\sigma$
- 201216C  $\rightarrow$  z=1.1, strongly EBL absorbed
- 221009A  $\rightarrow$  full moon, not published yet

#### → we can learn the most from the closest and brightest objects (that don't occur during full moon)



without proper statistical test:  $\rightarrow$  **Bactrian** 

# 2) GRB 190829A (detected by H.E.S.S.)



• preference for single component  $(5\sigma)$ 





#### Now what?



#### **Structure**

- GRB modeling basics
  - → what do I actually mean by *Dromedary* and *Bactrian*?



• How stable is the Bactrian claim for GRB 190114C (MAGIC) ?



# Fireball model (GRB basics)





# Fireball model: Long GRB



- Lorentz factors up to few 100
  - $\rightarrow$  relativistic compression
- Quasi-isotropic outflow
- Energetics:
  - $\rightarrow$  observed up to:  $E_{\rm iso} \sim 10^{54} erg$

$$\rightarrow E_{\rm tot} = \frac{\Omega}{4\pi} E_{\rm iso} \sim 10^{51} {\rm erg}$$

- $\rightarrow$  comparable to SN !
- efficient converters of kinetic energy to radiation

# **One zone assumption**

- Homogeneous shell of electrons/positrons and photons
- relativistic shock
  - $\rightarrow$  injection of non-thermal particles ( $\varepsilon_e, \zeta_e$ )
  - $\rightarrow$  turbulent magnetic fields ( $\varepsilon_B$ )
- particles cool
- photons escape =>

| downstream              |      |           | upstream                      |
|-------------------------|------|-----------|-------------------------------|
|                         |      |           | $ ho_{ m up}c^2eta^2\Gamma^2$ |
| $\otimes$               |      | )         |                               |
| $\bullet$               | r, V | $\otimes$ |                               |
| $\otimes$ $\mathcal{V}$ | ۲    |           |                               |
|                         |      | 7         |                               |
|                         |      |           |                               |

rel. shock

see e.g. Piran 2005 for a detailed review

# **One zone assumption**

- Homogeneous shell of electrons/positrons and photons
- relativistic shock
  - $\rightarrow$  injection of non-thermal particles ( $\varepsilon_e, \zeta_e$ )
  - $\rightarrow$  turbulent magnetic fields ( $\varepsilon_B$ )
- particles cool
- photons escape =>



see e.g. Piran 2005 for a detailed review



(can also define  $\varepsilon$  via downstream energy density)

# **Magnetic field**

68 110 180 625 2400 360 10<sup>3</sup> • energy conservation: Lorentz factor  $\Gamma$ 10<sup>1</sup>  $\rightarrow E_{iso} = \Gamma^2(t_{obs}) M_{sw}(t_{obs}) c^2$  $\rightarrow t_{obs} = 90s, n_{ISM} = 1cm^{-3}$  $\rightarrow \Gamma \sim 90$  $E_{iso} = 2.5 \cdot 10^{53} erg$ • ram pressure (SRF):  $- n_{ISM} = 1 \ cm^{-3}$ ----  $n_{ISM} = 100 \ cm^{-3}$  $10^{0} + 10^{1}$  $\rightarrow p_{ram} \approx m_p c^2 n_{up} \Gamma^2$  $10^{2}$  $10^{3}$ obs. time after trigger [s] magnetic field:  $\frac{B^2}{8\pi} = \varepsilon_B p_{ram}$  $\rightarrow \begin{array}{c} \varepsilon_B \sim 10^{-4} \rightarrow B \sim 0.1G \\ \rightarrow \varepsilon_B \sim 10^{-2} \rightarrow B \sim 1G \end{array}$ 



# 3) Photon Spectrum: Synchrotron Self-Compton (SSC)

→ Convolve electron spectrum with radiation kernel



# **Reduced SSC model**

- $\rightarrow$  incorporates 2 types of solutions
- 1. double hump solution (SSC):



2. single hump solution (syn. only)





# Dromedary – single hump – syn. only – model

- extending a single synchrotron component up to TeV?
  - $\rightarrow$  "just" increase max. electron energy
  - $\rightarrow$  super-efficient acceleration  $\eta \ll 1$
  - $\rightarrow$  phenomenological description
- Problem: one zone model uses same magnetic field for
  - 1. confinement within acceleration zone
  - 2. creating radiation
  - $\rightarrow$  burn-off limit  $E_{\rm max}^{\gamma} \sim 100 \ MeV$
- 2 zones 2 field strengths? (e.g. Khangulyan et al. 2021)



# **Specifying the Camel Question**

#### do we observe two humps

#### or do we need to think about ways to **extend the single hump** to VHE energies?





# **GRB 190114C**











# GRB 190114C (MAGIC %)







• just looking at lovely butterflies has no statistical meaning...



 $\rightarrow$  combined fit of all instruments



### Instrument response for single detector



- detector consists of many energy channels
  - $\rightarrow$  energy dispersion
- we cannot simply invert (unfold) this matrix

 $\rightarrow$  forward folding

eff. area [cm<sup>2</sup>]

 $\rightarrow$  model







 $\rightarrow$  model absorbed



$$\frac{\mathrm{d}N_{\mathrm{source}}}{\mathrm{d}E\,\mathrm{d}t\,\mathrm{d}A}\left(\widehat{E}\right)\,\exp\left(-\tau(\widehat{E})\right)$$



→ model absorbed measurements of detectors



Counts rate 
$$(E) = \int d\hat{E} \frac{dN_{\text{source}}}{dE \, dt \, dA} (\hat{E}) \exp\left(-\tau(\hat{E})\right) A_{\text{eff}}(E, \hat{E})$$



→ model absorbed measurements of multiple detectors



Counts rate 
$$(E) = \int d\hat{E} \frac{dN_{\text{source}}}{dE \, dt \, dA} (\hat{E}) \exp\left(-\tau(\hat{E})\right) A_{\text{eff}}(E, \hat{E}) c_{\text{sys}}$$



→ fit model to absorbed measurements of multiple detectors



Counts rate 
$$(E) = \int d\hat{E} \frac{dN_{\text{source}}}{dE \, dt \, dA} (\hat{E}) \exp\left(-\tau(\hat{E})\right) A_{\text{eff}}(E, \hat{E}) c_{\text{sys}}$$



# **Forward folding**

→ fit model to absorbed measurements of multiple detectors



Counts rate 
$$(E) = \int d\hat{E} \frac{dN_{source}}{dE dt dA} (\hat{E}) \exp(-\tau(\hat{E})) A_{eff}(E, \hat{E}) c_{sys}$$
  
and  
Background rate different detectors have  
different statistics!

# **Open source software is already there**

framework to fit

•

. . .

- multiple detectors ٠
- on the counts level (proper statistics) ٠
- with different fitting algorithms • (Bayesian/Frequentist)

Band South Stranger S → https://threeml.readthedocs.io/en/stable/index.html#

A **Python** package for **gamma-ray** astronomy

**Multi-Mission** 

→ https://gammapy.org/



Bayesian approach

 $\rightarrow posterior = \frac{likelihood}{evidence} \cdot prior$ 

- $\rightarrow$  (sometimes log) uniform priors
- → evidence:  $Z = \int d\vec{\theta} \ likelihood \cdot prior$ (→ likelihood averaged over parameter space weighted with priors)
- sample posterior
  - $\rightarrow$  detect multiple maxima?
- model comparison via Bayes factor  $Z_1/Z_2$ 
  - $\rightarrow$  quantitative way of measuring preference of model 1 over model 2
  - $\rightarrow$  metric scale crucial



https://johannesbuchner.github.io/UltraNest/index.html

# **Structure for next few slides**

#### For first time bin (68-110s):

- 1. Intuition: Power law best fit for each instrument
- **2. Full result:** Full likelihood analysis with all instruments, using reduced afterglow radiation model
- **3. Stability:** examine significance of result from stability under perturbations

# Intuition from power laws BAT 15-150 keV

2.<sup>10</sup>, 2.<sup>05</sup>, 2.<sup>00</sup>, 2.<sup>95</sup>, 7.<sup>90</sup> index

 $-1.998^{+0.023}_{-0.024}$ 





#### **Fermi LAT**



#### $\rightarrow$ single photon counter

#### Fermi LAT



 $\rightarrow$  single photon counter

 $\rightarrow$  spectral index not really constrained 45







esiduals [ $\sigma$ ]



### **Preference for new component?**

Bayes factor for new component



### **Preference for new component?**

Bayes factor for new component



# **Stability of Preference: LAT**

Bayes factor for new component





- shift LAT time selection window by 5% (2.1s)
- leave out LAT completely
  - $\rightarrow$ LAT not very strong

# **Stability of Preference: XRT**

Bayes factor for new component



- systematic cross calibration uncertainty limited to 15% (a.k.a. floating norm or effective area correction)
- leave out XRT completely

### → XRT drives new component!





# **Conclusions on the Camel question**

- do we observe two humps or do we need to think about ways to extend the single hump to VHE energies?
  - $\rightarrow$  we can't tell clearly for GRB 190114C
  - $\rightarrow$  consistent with single hump preference for GRB 190829A
  - $\rightarrow$  GRB 221009A seems to be flat as well



- why are bumps at same height?
  - → Klein-Nishina suppression requires fine tuning/ regulating process in SSC picture
- second component of hadronic origin?



- how does bump extend to such high energies?
- two zones?
- acceleration process?

## Take away messages

- We need more **bright**, **nearby** GRBs (without moonlight!)
- We should get most out of the data by fitting at the counts level
  - $\rightarrow$  we also need to share our instrument response functions...
- GRB 190114C is no clear camel type
  - $\rightarrow$  in particular no stable evidence for two bumps!  $\rightarrow$  consistent with GRB 190829A
- both models come with more questions
- lets see what GRB 221009A will tell us

## Take away messages

- We need more **bright**, **nearby** GRBs (without moonlight!)
- We should get most out of the data by fitting at the counts level
  - $\rightarrow$  we also need to share our instrument response functions...
- GRB 190114C is no clear camel type
  - $\rightarrow$  in particular no stable evidence for two bumps!  $\rightarrow$  consistent with GRB 190829A
- both models come with more questions
- lets see what GRB 221009A will tell us

#### Thank you!